首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过宏观力学性能、化学收缩、pH值、氯离子浓度等测试和SEM、XRD等微观表征研究粉煤灰掺量对海水海砂高性能混凝土性能的影响。结果表明:为维系钢筋钝化膜稳定,高温蒸养时粉煤灰掺量不宜大于30%(质量分数,下同),标养时粉煤灰掺量不宜大于50%;海水海砂高性能混凝土中游离Cl-浓度随养护时间波动,前期先升高后骤降,后期缓慢增加,标养条件下Cl-浓度明显低于高温蒸养条件下;海水海砂高性能混凝土具有早强性,其强度随粉煤灰掺量增加大致呈下降趋势,高温蒸养可明显提高混凝土抗折、抗压强度;粉煤灰掺量越多,残留的未水化颗粒越多,高温蒸养可有效改善混凝土微观结构,提高致密性;粉煤灰掺量过多或过少均会增加硅酸盐水泥体系的化学收缩,粉煤灰掺量为30%和40%时混凝土化学收缩值较小。  相似文献   

2.
Heat treatment is widely used to accelerate the strength-gaining rate of concrete. In general, the ultimate strengths of the heated-treated concrete are lower than those of the standard cured specimens. When ultrafine fly ash (UFA) is included in concrete, the pozzolanic reaction is accelerated through the heat treatment. Sometimes, various chemical activators were used to activate the reactivity of fly ash. In the current study, UFA and slag were used as a replacement for cement, steam curing and chemical activators were used to accelerate hydration of cement and fly ash, and then compared with moist curing. This paper presents the influence of steam curing on the compressive strength of concrete containing UFA with or without slag. The experimental results indicated that the concrete containing UFA has low early strength after 13-h steam curing and that the difference between the 28-day compressive strength of concrete through 13-h steam curing and that of moist-cured concrete is large, but the concrete with UFA and CaSO4 or Ca(OH)2 has a high early strength, thus, the reactivity of fly ash must be accelerated. Concrete containing UFA and ground slag was prepared, whose compressive strengths were improved.  相似文献   

3.
张文之  刘敏 《硅酸盐通报》2017,36(8):2619-2624
通过加速碳化试验,系统研究了不同养护条件和粉煤灰掺量的大掺量粉煤灰混凝土碳化规律.并利用扫描电镜和压汞法研究了大掺量粉煤灰混凝土碳化前后的微观形貌和孔结构变化.结果表明:经标准养护后的粉煤灰混凝土的抗碳化能力大于经自然养护后的粉煤灰混凝土的抗碳化能力;随着粉煤灰掺量的增加,混凝土抗碳化能力减小;标准养护下粉煤灰混凝土孔隙率相比于其在自然养护下的孔隙率降低了19.6%;碳化后浆体密实度增加,孔径细化,孔隙率降低31.4%.  相似文献   

4.
江南宁  杨元霞  赵兴英 《粉煤灰》2010,22(3):6-8,13
研究了蒸养条件下粉煤灰、矿渣的掺量对水泥净浆化学结合水量和抗压强度的影响,揭示了矿物掺合料对蒸养水泥净浆水化性能和力学性能的影响。试验结果表明,与标准养护相比,蒸汽养护更有利于激发粉煤灰和矿渣的火山灰活性,促进水泥的早期水化,提高水泥浆体的早期强度;但无论是蒸汽养护还是标准养护,随着矿物掺合料掺量的增加,复合胶凝材料的水化性能和力学性能明显减弱,因此矿物掺合料掺量不宜太大。  相似文献   

5.
This paper outlines the preliminary results of a research project aimed at optimizing the fly ash content in concrete. Such fly ash concrete would develop an adequate 1-day compressive strength and would be less expensive than the normal Portland cement concrete with similar 28-day compressive strength. The results show that, in a normal Portland cement concrete having a 28-day compressive strength of 40 MPa, it is possible to replace 50% of cement by a fine fly ash (∼3000 cm2/g) with a CaO content of ∼13%, yielding a concrete of similar 28-day compressive strength. This concrete can be designed to yield an early-age strength of 10 MPa and results in a cost reduction of about 20% in comparison to the control concrete. In a case of a coarser fly ash (∼2000 cm2/g) with a CaO content of ∼4%, substitution levels of cement by this ash could be from 30% to 40%. This concrete yields a 1-day compressive strength of 10 MPa and a 28-day compressive strength similar to that of the control concrete. The total cost of this concrete is about 10% lower than that of the control concrete.  相似文献   

6.
通过测定不同龄期净浆化学结合水量和抗压强度,并结合SEM,研究了在蒸养条件下激发剂对水泥-粉煤灰复合胶凝材料水化性能的影响。结果表明:蒸养条件及激发剂提高了水泥-粉煤灰复合胶凝材料的水化速度与粉煤灰的活性。  相似文献   

7.
The effects of different activator concentration, liquid/fly ash ratio, and curing temperature and time on the compressive strength of specimens prepared from low-calcium fly ash activated with sodium hydroxide without the use of Portland cement were investigated. SEM, XRD and mercury intrusion porosimetry (MIP) were used to observed the structural feature, reaction products, and porosity and pore-size distribution of the specimens from alkaliactivated fly ash, respectively. It was found that the degree of reactivity, as shown by the compressive strength, the activator concentration and the ratio of liquid/fly ash, and the curing temperature always result to be significative factors. The 7, 14, and 28-day compressive strengths of specimens prepared from alkali-activated fly ash by 5M NaOH solution at 50 °C are 152, 219, and 263 kgf/cm2, while those from 6M solution are 184, 225, and 267 kgf/cm2, respectively. In SEM observation, the fly ash activated by the 5M NaOH solution shows a more continuous matrix with solid and non porous due to subsequent gel restructuring by amorphous alkaline aluminosilicate produced from alkali-activated fly ash.  相似文献   

8.
赵雅明  张振  王畔  张明飞 《硅酸盐通报》2022,41(9):3170-3175
传统超高性能混凝土(UHPC)的硅灰用量一般都比较高,导致其制作成本较高,而且自收缩比较大,对实际工程应用造成了一定的影响。本文用粉煤灰和矿粉部分或全部替代硅灰制备UHPC,并对其工作性能、力学性能、自收缩及孔结构特征进行了试验研究。结果表明:采用粉煤灰或矿粉替代硅灰可以改善UHPC拌合物的流动性,替代率越高,拌合物的流动度越大;当采用粉煤灰或矿粉替代50%(质量分数)硅灰时,在标准养护下,对28 d抗压强度的影响较小,而在高温蒸养下,则会导致28 d抗压强度下降,当替代率达到100%(质量分数)时,无论是标准养护还是高温蒸养,都会显著降低28 d抗压强度;采用粉煤灰或矿粉替代硅灰能降低细孔的占比,增大孔径,减少自收缩,且粉煤灰对于自收缩的抑制效果优于矿粉。  相似文献   

9.
崔正龙  李静 《硅酸盐通报》2017,36(7):2310-2314
试验着眼于C30强度等级混凝土,以不同粗骨料(再生骨料、天然骨料)、粉煤灰掺量(15%、30%、50%)及养护环境(标养、室内自然养护)为变量探究粉煤灰对不同骨料混凝土长期强度的影响.试验结果表明,随着粉煤灰取代率的增加,在龄期较短时表现出对再生混凝土及普通混凝土的强度贡献率都有所下降的趋势,但后期经养护龄期的增加,180 d以后中长期强度贡献率下降幅度有所趋缓;当养护环境为标准养护时,粉煤灰取代率为30%以内试件的强度贡献率在180 d时达到了最大,之后强度贡献率有所下降,粉煤灰取代率为50%时,养护龄期超过180 d其强度贡献率也会有所增加;当养护环境为室内自然养护时,随着养护龄期的增长对不同取代率粉煤灰、不同骨料混凝土的中长期强度贡献率都有所加大.  相似文献   

10.
粉煤灰水泥石碳化性能的化学分析   总被引:2,自引:0,他引:2  
开发了一种自制测量装置。利用该装置,沿碳化深度方向,分层测定了碳化粉煤灰水泥石中CaCO3的含量。绘制了"CaCO3含量–深度"曲线。根据曲线特点,定义了完全碳化区、部分碳化区、未碳化区等概念和碳化程度、碳化速度等特征指标。研究了粉煤灰掺量、水胶比、龄期、养护条件、碳化前烘干处理、碳化时间、碳化湿度等对粉煤灰水泥石碳化性能的影响。结果表明:粉煤灰掺量越大,水胶比越高,龄期越短,养护环境越干燥,碳化前试件越干燥,粉煤灰水泥石的抗碳化性能越差;碳化时间越长,碳化湿度越低,粉煤灰水泥石的碳化程度越高;但碳化速度随碳化时间的增长而减慢。这些结论与文献报道的用其他方法得到的公认的结论一致。本方法还得到了更加深入的研究结果,即:粉煤灰掺量越大、粉煤灰水泥石中可碳化物质的相对含量越低;水胶比、龄期、养护条件、碳化时间、碳化湿度基本不改变粉煤灰水泥石中可碳化物质的相对含量;龄期、养护条件可改变未碳化粉煤灰水泥石中碳酸盐的相对含量。  相似文献   

11.
《Fuel》2007,86(7-8):1208-1211
The utilization of a solid waste – fly ash (FA) in the construction of concrete dams was investigated in this paper, which contained its effects on the strength, shrinkage and expansion strain of dam concrete with and without 8% of a novel MgO-bearing expansive agent. The results are shown a relationship between the content of fly ash replacing cement and the above properties of dam concrete.The compressive strengths of dam concrete with 50% fly ash in 90 d are higher than that of dam concrete with 30% fly ash or without fly ash slightly. Fly ash may decrease the deformation of dam concrete in that with 50% fly ash, and the shrinkage and expansive strain was reduced significantly – about 33% and 40% less than that of the specimens without fly ash respectively.  相似文献   

12.
粉煤灰混凝土抗硫酸盐侵蚀性能(英文)   总被引:1,自引:0,他引:1  
为了探究掺粉煤灰混凝土的抗硫酸盐侵蚀性能,固定水灰比,用不同种类的粉煤灰在20℃条件下制备混凝土试样。在8℃或20℃的条件下分别水养14、28 d和90 d后,试样在20℃和8℃的条件下被置于SO24-浓度为16 g/L的硫酸钠溶液中。试样的抗硫酸盐侵蚀性能通过目视观察和长度变化来评价。研究了粉煤灰种类、先期养护时间和温度对粉煤灰混凝土的抗硫酸盐侵蚀性能的影响。结果表明:石灰含量,硫酸盐浓度和玻璃相中的碱含量是影响粉煤灰混凝土抗硫酸盐侵蚀性能的主要因素,并且提出了粉煤灰的组成影响粉煤灰混凝土抗硫酸盐侵蚀性的机理。  相似文献   

13.
为研究粉煤灰对桥梁混凝土抗渗性能的影响,制备了不同粉煤灰掺量的混凝土样品,测试分析了桥梁混凝土抗压强度、孔隙结构、渗透高度和抗氯离子渗透性能随粉煤灰掺量和养护龄期的变化规律。研究结果表明:(1)当桥梁混凝土养护龄期为7d时,桥梁混凝土的抗压强度随着粉煤灰掺量的增多而逐渐降低;当混凝土龄期大于28d时,桥梁混凝土的抗压强度在粉煤灰掺量为30%左右时最大。(2)粉煤灰掺量为30%时,桥梁混凝土密实度达到最大,此时其内部小孔隙增大而大孔隙减小。(3)桥梁混凝土抗氯离子渗透系数随着粉煤灰掺量的增大先减小后增大,在粉煤灰掺量为30%时取得最小值。  相似文献   

14.
A laboratory investigation was carried out to evaluate the strength properties of high-volume fly ash (HVFA) roller compacted and superplasticised workable concrete cured at moist and dry curing conditions. Concrete mixtures made with 0%, 50% and 70% replacement of normal Portland cement (NPC) with two different low-lime Class F fly ashes, good and low quality, were prepared. Water-cementitious material ratios ranged from 0.28 to 0.43. The compressive, flexural tensile and cylinder splitting tensile strengths were measured and presented. The relationship between the flexural tensile and compressive strengths was discussed. The influence of loss on ignition (LOI) content of fly ash on water demand and the strength of concrete was also discussed. The influence of moist and dry curing conditions on the high-volume fly ash (HVFA) concrete system was assessed through a proposed simple efficiency factor. The study showed that producing high-strength concrete was possible with high-volume fly ash content. LOI content increased the water demand of fresh concrete. HVFA concrete was found to be more vulnerable to dry curing conditions than was NPC concrete. It was concluded that HVFA concrete was an adequate material for both structural and pavement applications.  相似文献   

15.
This paper presents a laboratory study on the strength development of concrete containing fly ash and optimum use of fly ash in concrete. Fly ash was added according to the partial replacement method in mixtures. A total of 28 mixtures with different mix designs were prepared. 4 of them were prepared as control mixtures with 250, 300, 350, and 400 kg/m3 cement content in order to calculate the Bolomey and Feret coefficients (KB, KF). Four groups of mixtures were prepared, each group containing six mix designs and using the cement content of one of the control mixture as the base for the mix design. In each group 20% of the cement content of the control mixture was removed, resulting in starting mixtures with 200, 240, 280, and 320 kg/m3 cement content. Fly ash in the amount of approximately 15%, 25%, 33%, 42%, 50%, and 58% of the rest of the cement content was added as partial cement replacement. All specimens were moist cured for 28 and 180 days before compressive strength testing. The efficiency and the maximum content of fly ash that gives the maximum compressive strength were obtained by using Bolomey and Feret strength equations. Hence, the maximum amount of usable fly ash amount with the optimum efficiency was determined.This study showed that strength increases with increasing amount of fly ash up to an optimum value, beyond which strength starts to decrease with further addition of fly ash. The optimum value of fly ash for the four test groups is about 40% of cement. Fly ash/cement ratio is an important factor determining the efficiency of fly ash.  相似文献   

16.
吴月华  闫明  王飞 《山东化工》2007,36(1):23-25
采用对比的方法,实验研究了粉煤灰、矿粉对水工混凝土的工作性、抗压强度、弹性模量、干缩和受压徐变的影响。结果表明,在粉煤灰、矿粉等量取代部分水泥后,混凝土的工作性改善,抗压强度和抗压弹模与基准样相近,而28d以后的干缩明显减小;掺有粉煤灰、矿粉的混凝土随养护龄期的延长、强度的增加,其受压徐变逐渐减小;当粉煤灰掺量(质量分数)从15%增加到25%时,混凝土的徐变增大;对于相同掺量(15%)的粉煤灰、矿粉混凝土,经60d养护后加荷其徐变基本相同。  相似文献   

17.
苏小梅  李坚 《硅酸盐通报》2018,37(2):625-629
蒸养混凝土具有早期强度高、模具周转速度快和生产效率高等显著优势,成为混凝土预制构件主要制备工艺.通过抗压强度、离子浸出试验、X射线衍射等测试方法,研究了锌、铬、铜对蒸养混凝土的力学性能、水化产物结构及其浸出特性,并探讨了粉煤灰对蒸养混凝土固化重金属离子效果的影响规律.结果表明:①Zn、Cr和Cu离子能够在不同程度上降低蒸养混凝土的抗压强度,当掺量为1.0%时,抗压强度分别降低了50.63%、13.23%和99.27%;Zn、Cr和Cu离子不能明显改变水化产物的微观形貌,但是会抑制氢氧化钙(CH)和钙矾石的生成和结晶.②当掺量低于1.0%时,蒸养混凝土对Zn和Cr离子具有很好地固化作用,浸出浓度均小于0.21 mg/L,但是Cu离子的浸出浓度高达0.92 mg/L以上.掺加20%粉煤灰的蒸养混凝土抗压强度会降低5~8 MPa,并不能提高其对重金属离子的固化性能.  相似文献   

18.
王辉  刘旭辉  蔡升宇  张武 《硅酸盐通报》2021,40(5):1573-1578
粉煤灰对自密实混凝土的工作性能、抗压强度和耐久性能等有着显著的影响。为了探究粉煤灰掺量对自密实混凝土抗压强度发展规律的影响,配制了粉煤灰掺量为30%、45%、60%(体积分数),水灰比为1.05、1.15、1.25(体积比)的自密实混凝土并进行立方体抗压强度试验,对其3 d、7 d、28 d、90 d抗压强度的变化规律进行了分析。结果表明,随着粉煤灰掺量的增加,混凝土抗压强度逐渐减小。然后对3 d/28 d、7 d/28 d、90 d/28 d的强度比值进行分析,结果表明,粉煤灰对混凝土早期强度影响较小,对后期影响较大。最后借鉴欧洲规范CEB-FIP探究了粉煤灰与水泥混合下的复合粉体对自密实混凝土抗压强度影响系数,为相关工程应用提供理论依据。  相似文献   

19.
The effect of fineness of fly ash on mechanical properties and alkali–silica reaction resistance of cement mortar mixtures incorporating fly ash has been investigated within the scope of this study. Blaine fineness of fly ash has been increased to 907 m2/kg from its original 290 m2/kg value by a ball mill. Test samples were prepared by replacing cement 20, 40 and 60%, with finer and coarser fly ashes and kept under standard and steam curing conditions until testing. Test results showed that grinding process improved the mechanical properties of all samples significantly. The beneficial effect of grinding fly ash, may increase utilization of this by-product in precast and ready-mix concrete industries. Incorporation of fly ash with different fineness values and ratios also decreased the expansions to harmless levels of cement mortars due to alkali–silica reaction.  相似文献   

20.
The use of fly ash as a cement replacement material increases the long-term strength and durability of concrete. Despite these great benefits, the use of fly ash is limited due to the low early strength of fly ash concrete. To eliminate this problem, many studies have been conducted on accelerating the pozzolanic properties of fly ash. The study reported below investigated the strength and microstructural characteristics of fly ash-cement systems containing three kinds of activators—Na2SO4, K2SO4, and triethanolamine—to accelerate the early strength of fly ash mortars. Through the use of thermal gravity analysis, it was demonstrated that the activators not only decreased or maintained the amount of Ca(OH)2 products, but also increased the production of ettringite at early ages. X-ray diffraction, scanning electron microcopy, and mercury intrusion porosimetry also confirmed that in the early curing stages of fly ash-cement pastes containing activators, large amounts of ettringite were formed, resulting in a reduction in the pore size ranging from 0.01 to 5 μm. The research results support the supposition that the addition of small amounts of activators is a viable solution for increasing the early-age compressive strength of fly ash concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号