首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was performed for the recovery of CO2 from flue gas of the electric power plant by pressure swing adsorption process. Activated carbon was used as an adsorbent. The equilibrium adsorption isotherms of pure component and breakthrough curves of their mixture (CO2 : N2 : O2=17 : 79 : 4 vol%) were measured. Pressure equalization step and product purge step were added to basic 4-step PSA for the recovery of strong adsorbates. Through investigation of the effects of each step and total feed rate, highly concentrated CO2 could be obtained by increasing the adsorption time, product purge time, and evacuation time simultaneously with full pressure-equalization. Based on the basic results, the 3-bed, 8-step PSA cycle with the pressure equalization and product purge step was organized. Maximum product purity of CO2 was 99.8% and recovery was 34%.  相似文献   

2.
Adsorption and desorption in zeolite 5A and CMS beds were compared by using a ternary mixture (N2/ O2/Ar; 78 : 21 : 1 vol%). Because the breakthrough curves for both beds show a tail by temperature variance, a non-isothermal mathematical model was applied to the simulation of adsorption dynamics. The LDF model with a constant rate parameter was enough to predict the experimental breakthrough and temperature curves of an equilibrium separation bed, while the modified LDF model with a concentration-dependent parameter should be applied to a kinetic separation bed. In the CMS bed initially saturated with He, Ar was the first breakthrough component with N2 following after a short interval. Then, after a long interval, the breakthrough of O2 occurred with a broad roll-up due to its fast diffusion rate and the relatively slow diffusion rate of N2. In the CMS bed initially saturated with O2, the breakthrough curves of O2 and N2 showed a very broad shape because of the slow diffusion of N2 into CMS. In the zeolite 5A bed, the breakthrough time sequence was Ar, O2, and N2 at very close time intervals. After the sharp roll-ups of O2 and Ar, the variation of the breakthrough curves was negligible. The inflection of the temperature profile in the zeolite 5A bed was caused by the crossover of the O2 and N2MTZs, while in the CMS bed it was caused by the difference in the diffusion rates of O2 and N2.  相似文献   

3.
Adsorption and desorption characteristics of CF4, which is considered a significant global warming compound, were experimentally investigated. Dynamic behavior of feed gas mixture of CF4 and N2 was observed by breakthrough curve. Effects of CF4 concentrations in the feed gas were investigated, and three pressurization methods were compared. Desorption experiments were carried out using vacuum blowdown and purge. Desorption curves with various N2 flow rates, feed compositions, and purge time were obtained. The enrichment factor was high for low concentration of CF4. However, the time required for complete desorption was independent of CF4 concentration. In the operation of separate vacuum blowdown and purge steps, a short period of vacuum blowdown followed by the purge step was effective.  相似文献   

4.
5.
Techniques for the production of composite oxygen selective adsorbents are disclosed. These adsorbents are comprised of a carbon molecular sieve (CMS) which is kinetically selective for the adsorption of oxygen over nitrogen and an agent for the sorption of water such as LiCl or SiO2. The adsorption properties of the composite adsorbents and results obtained from pressure swing adsorption (PSA) process testing are presented. The composite adsorbents improve the nitrogen PSA process performance (recovery and productivity) over the use of conventional desiccants which do not exhibit oxygen selectivity. Using a standard nitrogen PSA process cycle, replacement of conventional inorganic desiccants like alumina with the current CMS-based desiccants improved air recovery 2 to 4 percentage points and increased nitrogen productivity 15 to 20% at 70°F and a nitrogen purity of 99.5%.  相似文献   

6.
The purification of different components of air, such as oxygen, nitrogen, and argon, is an important industrial process. Pressure swing adsorption (PSA) is surpassing the traditional cryogenic distillation for many air separation applications, because of its lower energy consumption. Unfortunately, the oxygen product purity in an industrial PSA process is typically limited to 95% due to the presence of argon which always shows the same adsorption equilibrium properties as oxygen on most molecular sieves. Recent work investigating the adsorption of nitrogen, oxygen and argon on the surface of silver‐exchanged Engelhard Titanosilicate‐10 (ETS‐10), indicates that this molecular sieve is promising as an adsorbent capable of producing high‐purity oxygen. High‐purity oxygen (99.7+%) was generated using a bed of Ag‐ETS‐10 granules to separate air (78% N2, 21% O2, 1% Ar) at 25°C and 100 kPa, with an O2 recovery rate greater than 30%. © 2012 American Institute of Chemical Engineers AIChE J, 59: 982–987, 2013  相似文献   

7.
The production of high purity hydrogen (99.99+%) at reduced cost is an important and sought target. This work is focused on the separation of hydrogen from a five component mixture (H2/CO2/CH4/CO/N2) by pressure swing adsorption. A complete mathematical model that describes the dynamic behaviour of a PSA unit is presented. This model is applied in the study of the behaviour of both single column and four columns PSA processes with layered activated carbon/zeolite beds and with an eight steps cycle. In the single column simulation, a 99.9994% purity hydrogen stream is attained at the end of the feed step for a process hydrogen recovery of 51.84% and a productivity of . The multicolumn simulation predicts a hydrogen recovery and purity, respectively, of 52.11% and 99.9958%. The influence of feed flow rate, purge to feed ratio and lengths of both adsorbent layers on the system performance is assessed. It is shown that the introduction of the zeolite layer improves both the purity and recovery of the process. Reduced models are formulated based on the sequential identification of controlling resistances in the complete model. The predictions of the reduced models are evaluated by comparing their results with those obtained from the complete model. It is shown that the model that merely takes into account the micropore resistance (described by the LDF model) and assumes thermal equilibrium only between the gas and solid phases satisfactorily predicts the behaviour of the pressure swing adsorption unit.  相似文献   

8.
The reactivity of ternary V2O5-WO3/TiO2 De-NO x catalysts is investigated by transient and steady-state techniques, and results have been compared with those obtained over binary V2O5/TIO2 samples having the same V2O5 loading. The results indicate that the reactivity of the ternary catalysts in the SCR reaction is higher than that of the vanadia-titania samples, and that at low temperatures the SCR reaction occurs via a redox mechanism that involves at first the participation of the catalyst lattice oxygen and then the reoxidation of the reduced sites by gas-phase oxygen. Accordingly, the higher reactivity of the ternary catalysts has been related to their superior redox properties.  相似文献   

9.
A systematic analysis of several vacuum swing adsorption (VSA) cycles with Zeochem zeolite 13X as the adsorbent to capture CO2 from dry, flue gas containing 15% CO2 in N2 is reported. Full optimization of the analyzed VSA cycles using genetic algorithm has been performed to obtain purity‐recovery and energy‐productivity Pareto fronts. These cycles are assessed for their ability to produce high‐purity CO2 at high recovery. Configurations satisfying 90% purity‐recovery constraints are ranked according to their energy‐productivity Pareto fronts. It is shown that a 4‐step VSA cycle with light product pressurization gives the minimum energy penalty of 131 kWh/tonne CO2 captured at a productivity of 0.57 mol CO2/m3 adsorbent/s. The minimum energy consumption required to achieve 95 and 97% purities, both at 90% recoveries, are 154 and 186 kWh/tonne CO2 captured, respectively. For the proposed cycle, it is shown that significant increase in productivity can be achieved with a marginal increase in energy consumption. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4735–4748, 2013  相似文献   

10.
The effects of pressure drop on the dynamics of fixed-beds were theoretically studied. The system used was an H2/CO mixture (70 vol% H2, 30 vol% CO) in zeolite 5A. The pressure drop at the pressurization step affected the breakthrough time at an adsorption step in the PSA process. As a result, the combined effects of pressure drop during adsorption and pressurization steps led to earlier breakthrough compared to the case without a pressure drop. The effect of pressure drop at the adsorption step under the non-isothermal condition was slightly larger than that under the adiabatic condition. In the case of pressurization and blowdown steps with large pressure drop, the flow pattern near the open end during a short period of time had to be explained by the Ergun equation instead of Darcy’s law. However, there was only a slight difference in the results of a multi-bed PSA process depending on whether or not the pressure drops at the pressurization/depressurization steps as well as at the adsorption step were considered.  相似文献   

11.
An experimental and theoretical study is performed for bulk separation of H2/CO2 mixture (70/30 volume %) by PSA process with zeolite 5A, a process widely used commercially in conjunction with the catalytic steam reforming of natural gas or naphtha. For the optimized adsorption conditions of PSA, the characteristics of adsorption/desorption characteristics have been studied through breakthrough and desorption experiments under various conditions. The purge-to-feed ratio is important to the H2 product purity only at a long adsorption step time. H2 could be concentrated from 70% in the feed to 99.99% at H2 recovery of 67.5%. The results of all five steps in PSA are successfully predicted by the LDF model considering an energy balance and nonlinear isotherm. For the model, the effective diffusivities (D,) are obtained separately from the uptake curves of H2 and CO2. The Langmuir-Freundlich isotherm is used to correlate the experimental equilibrium data and is very well fitted to the results.  相似文献   

12.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

13.
A general dynamic model is developed for separation of air over a carbon molecular sieve and a zeolite adsorbent for production of nitrogen and oxygen. The proposed model is validated using experimental data from working laboratory scale N2–PSA and laboratory scale O2–PSA systems. Simulations studies are performed to investigate the effect of changing various process variables, such as the duration of PSA steps, bed length and feed inlet velocity.  相似文献   

14.
《分离科学与技术》2012,47(16):3973-3983
Abstract

A five-step PSA cycle was studied for CO2 separation from CO2-N2 gas mixture in a single column at elevated temperatures using Poly-ethyleneimine (PEI) impregnated mesoporous silica SBA-15 as adsorbent. The PSA cycle study included a strong adsorptive rinse step in which the strongly adsorbed component, i.e., CO2 was used for rinsing the adsorbent bed in order to increase the purity of CO2 product. The study indicates that the adsorbent is regenerable under typical PSA conditions. The productivity of the adsorbent studied for CO2 separation was found to be comparable with commercial zeolite adsorbents as reported in literature.  相似文献   

15.
The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H2, and CO2 increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N2 decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H2, 0.9 vol% CO2, 2.5 vol% CH4, 40.6 vol% N2, < 5 ppb H2S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO2 catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C5+) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 °C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g·h/mol.  相似文献   

16.
A novel process for the direct ammoxidation of propane over steam-activated Fe-silicalite at 723–823 K is reported. Yields of acrylonitrile (ACN) and acetonitrile (AcCN) below 5% were obtained using N2O or O2 as the oxidant. Co-feeding N2O and O2 boosts the performance of Fe-silicalite compared to the individual oxidants, leading to AcCN yields of 14% and ACN yields of 11% (propane conversions of 40% and products selectivity of 25–30%). The beneficial effect of O2 on the propane ammoxidation with N2O contrasts with other N2O-mediated selective oxidations over iron-containing zeolites (e.g. hydroxylation of benzene and oxidative dehydrogenation of propane), where a small amount of O2 in the feed dramatically reduces the selectivity to the desired product. It is shown that the productivity of ACN and especially AcCN, expressed as mol product h−1 kgcat−1, is significantly higher over Fe-silicalite than over active propane ammoxidation catalysts reported in the literature. Our results open new perspectives to improve the performance of alkane ammoxidation catalysts.  相似文献   

17.
The vacuum pressure swing adsorption (VPSA) method, as an alternative way to separate the CH4/N2 mixture, was adopted to purify methane from coal mine methane. The performance of the VPSA process was investigated experimentally and theoretically with a reactivated carbon molecule sieve as the adsorbent. The computer calculations were compared to the experimental data. The concentrated methane with 79% purity could be collected directly during the high-pressure adsorption step with 93% recovery and 0.0720 mL·g–1·min–1 productivity, when the composition of raw gas was 10/90 vol% CH4/N2, which is of great significance for the utility of low quality energy gas.  相似文献   

18.
In this work, multicomponent breakthrough experiments (binary H2-CO2, ternary H2-CO2-CO and five-component H2-CO2-CO-CH4-N2) were performed under different operating conditions in activated carbon extrudates to validate the mathematical model. A 10 steps one-column VPSA experiment was also performed. These experiments allow experimental validation of adsorption equilibrium predicted by the multicomponent extension of the Virial isotherm and a fixed-bed mathematical model. In the VPSA experiment, a 99.981% hydrogen purity stream (with 63 ppm of CO contamination) was obtained with a hydrogen recovery of 81.6% and an adsorbent productivity of .The mathematical model was also employed to assess the effect of operating conditions and the influence of step times and pressure equalizations in the PSA unit. It was verified that high-purity hydrogen (>99.99%) can be obtained using this adsorbent with recoveries higher than 75% and unit productivities of .  相似文献   

19.
Dehydrogenation of propane coupled with N2O over a series of binary In2O3―Al2O3 mixed oxides was investigated. In contrast to the poor performance for sole N2O decomposition, a remarkable synergy was identified between N2O decomposition and propane dehydrogenation. Among the catalysts tested, the In2O3―Al2O3 sample containing a 20 mol% In2O3 showed the highest activity for propane dehydrogenation in the presence of N2O. Moreover, stability far superior to those of the conventional iron-based materials was observed, attributable to the moderate surface acidity of the In―Al―O composite. The essential role of N2O is suggested to generate active oxygen species facilitating propane dehydrogenation.  相似文献   

20.
The effects of a poorly packed bed on the pressure vacuum swing adsorption (PVSA) process were investigated experimentally and theoretically by a five-step two-bed PVSA system. At first, the adsorption dynamics of a zeolite LiX bed for air separation (78 mol% N2, 21 mol% O2 and 1 mol% Ar) was studied at various adsorption pressures and flow rates. In breakthrough results, the effect of adsorption pressure on variations in bed temperature was greater than that of the feed flow rate. A combined roll-up of Ar and O2 by N2 propagation was observed and the roll-up plateau reached about 4 mol%. The fluid dynamic behavior of the poorly packed bed was simulated at each step in the PVSA process. The pressure and velocity profiles in the non-isobaric steps were clearly different from those of a normally packed bed. The two-bed PVSA process using one poorly packed bed with additional 1% void volume in feed end of bed could produce a purity of 92.3mol% O2 from air, which was almost 1% purity lower than the PVSA with normal two beds. Even small asymmetry between beds, due to poor bed packing, could greatly reduce the product purity in the PVSA process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号