首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study is presented a general methodology to predict the performance of a continuous near-critical fluid extraction process to remove compounds from aqueous solutions using a hollow fiber membrane contactor. The stabilization of the gas-liquid interface in the membrane porosity and a high surface area to contact both phases represent some of the advantages that hollow fiber contactors offer over conventional contactor devices for the extraction of compounds from liquid feeds.A mathematical model has been developed integrating a resistances-in-series mass transfer system that takes into account boundary layers, membrane porosity and thermodynamic considerations with mass balances of the membrane contactor. Simulation algorithms were easily implemented with low calculation requirements.The system studied in this work is a membrane based extractor of ethanol and acetone from aqueous solutions using near-critical CO2. Predictions of extraction percentages obtained by simulations have been compared to the experimental values reported by Bothun et al. [2003a. Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor. Journal of Supercritical Fluids 25, 119-134]. Simulations of extraction percentage of ethanol and acetone show an average difference of 36.3% and 6.75% with the experimental data, respectively. More accurate predictions of the extraction of acetone could be explained by a better estimation of the transport properties in the aqueous phase that controls the extraction of this solute.When the model was validated, the effect of the configuration and the operating parameters was studied and local mass transfer resistances were evaluated. The proposed approach allows the evaluation of the relevance of membrane hydrophobicity for extraction in solutions under different thermodynamic conditions. This original methodology based on well-known phenomenological equations represents a general approach which could be applied in other processes using membrane contactors with different configurations.  相似文献   

2.
A new absorption liquid based on amino acid salts has been studied for CO2 removal in membrane gas-liquid contactors. Unlike conventional gas treating solvents like aqueous alkanolamines solutions, the new absorption liquid does not wet polyolefin microporous membranes. The wetting characteristics of aqueous alkanolamines and amino acid salt solutions for a hydrophobic membrane was studied by measuring the surface tension of the liquid and the breakthrough pressure of the liquid into the pores of the membrane. The dependence of the breakthrough pressure on surface tension follows the Laplace-Young equation. The performance of the new absorption liquid in the removal of CO2 was studied in a single fiber membrane contactor over a wide range of partial pressures of CO2 in the gas phase and amino acid salt concentrations in the liquid. A numerical model to describe the mass transfer accompanied by multiple chemical reactions occurring during the absorption of CO2 in the liquid flowing through the hollow fiber was developed. The numerical model gives a good prediction of the CO2 absorption flux across the membrane for the absorption of CO2 in the aqueous amino acid salt solutions flowing through the hollow fiber.  相似文献   

3.
The effects of baffles on the operation and mass-transfer characteristics in novel hollow fiber membrane contactor used in distillation were investigated. Hollow fiber membranes, coated with a 7 μm polydimethyl-siloxane, were operated as structural packing in the separation of ethanol-water solutions. The parallel flow mode was chosen for separation due to the stronger driving force of the concentration difference, in which liquid flows through the lumens of the fibers and vapor flows countercurrent-wise outside the fibers. Two baffles were installed on the shell side of the membrane contactors to enhance separation, which had a round shape with a semi-lunar hole. The results show that both baffled and unbaffled membrane contactors gave better, more productive separations than traditional packing in distillation, such as the excellent Sulzer Gauze BX structured packing. The baffled membrane contactors performed better than unbaffled ones, especially at high vapor velocities. The minimal HTU of membrane contactor with baffles could reach as low as 4.5 cm, and almost all the contactors could work well above the limit where flooding normally occurs in conventional cases. Theoretical analysis predicted that baffles helped membrane module to obtain a higher masstransfer coefficient and a smaller mass-transfer resistance. Finally, theoretical mass-transfer coefficient and experimental value were compared as well as the contribution of each individual mass-transfer coefficients among liquid, gas and membrane.  相似文献   

4.
We present results from experiments and numerical simulations of contact between a non-reactive gas (N2O and CO2) and a physical solvent (H2O) occurring in a polypropylene (PP) hollow fiber membrane contactor. The closed-loop liquid flow within the experimental setup provides transient curves representing the progressive saturation of the solvent by the gas. We develop an in-house numerical model to fully characterize the gas/liquid mass transfer both in the non-wetted and in the wetted modes, i.e., when the liquid starts partially wetting the pores of the membrane. Using experiments and numerical simulations, we show that the Henry constant (H) and the molecular diffusion coefficient of a non-reactive gas absorbing into a liquid solvent can be extracted by parameter estimation. Both parameters are obtained within a single experiment at a constant temperature and the comparison with temperature-dependant correlations yields excellent agreement over the whole range of temperature studied in this work. Simulations show a partial wetting of the membrane pore by the liquid meniscus during a contact between CO2 and H2O, possibly due to the plasticizer effect of CO2 inside the membrane contactor fibers.  相似文献   

5.
新型中空纤维膜接触器用于乙醇/水体系分离的探索   总被引:1,自引:1,他引:0       下载免费PDF全文
林兰  张国亮  孟琴 《化工学报》2007,58(11):2822-2827
引言 醇/水体系分离一直是化工生产中的重要环节,高效的醇/水分离技术能够使醇的产量大大提高,满足日益增长的工业生产需求.传统的分离方法如精馏、萃取等已经相当成熟,但是这些方法在工业生产过程中能耗巨大,越来越受到面临能源资源匮乏的当代社会的关注和制约.在此背景下,面向高效、节能的新型膜接触分离器应运而生,如Alan等[1]指出,工业化或半工业化的过程已经包括膜吸收、膜萃取以及渗透蒸馏等多个耦合分离单元[2-6].  相似文献   

6.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

7.
N,N-二甲基乙醇胺(DMEA)是一种很有前途的吸收剂,具有较快的反应速率和较高的CO2捕集能力。在本研究中,DMEA作为一种新型吸收剂被应用于中空纤维膜接触器,用于从CO2/CH4气体混合物中分离CO2。通过建立二维稳态数学模型,模拟了MEA、DEA、MDEA和DMEA四种吸收剂在不同操作条件下对CO2吸收性能的影响。结果表明,脱碳性能大小为MEA>DMEA>DEA>MDEA;气相参数对脱碳率的影响比液相参数更显著;提高气体流速和CO2浓度,脱碳率均会下降;提高液速和吸收剂浓度,脱碳率均增大,适当提高吸收剂流速和吸收剂浓度可以提高CO2去除效率。此外,CO2吸收通量将随着气体速度的增加而增加,随着液相中CO2负荷的增加而减少。最后,通过两种影响因素共同作用确定了膜接触器分离酸性气体的最佳操作条件。因此,膜吸收法在天然气脱碳方面有良好的潜力。  相似文献   

8.
中空纤维膜接触器脱碳和传质性能的数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
张力  鞠顺祥  闫云飞  张智恩 《化工学报》2014,65(6):2285-2293
中空纤维膜吸收烟气中CO2是一种清洁、高效、最具潜力的脱碳技术方法之一。本文建立了一个二维的中空纤维膜接触器平行逆流吸收混合气中CO2的非润湿模型。考虑轴向和径向扩散,模拟了EEA、EDA和PZ 3种吸收剂在不同操作条件下对CO2的脱除效果和传质性能。结果表明:脱碳性能从大到小为PZ>EDA>EEA;气相参数对脱碳和传质的影响比液相参数更显著;提高气体流速、CO2浓度和气温,脱碳率均会下降;提高液速、吸收剂浓度和液温,脱碳率均增大,而传质速率只有在提高气温时会下降,其他参数的升高均会使其增大;应采用适当的液相参数,防止操作参数过高带来的不利影响。  相似文献   

9.
Ceramic hollow fibre membrane contactors have been applied to carbon dioxide stripping from monoethanolamine (MEA) solution at high temperature where most polymeric membranes would fail to operate. The experimental results show that the membrane contactors are immune from hydrodynamic problems, such as flooding and loading, since the gas and liquid phases can totally be separated by the hollow fibre membranes. The height of transfer unit (HTU) of the contactor was determined to be as low as 15 cm and is dependent on the fluid velocities. The mass transfer coefficients were theoretically predicted and found to be within a reasonable deviation. The mass transfer resistance in the liquid phase was found to be the majority of the total resistance.  相似文献   

10.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

11.
The time-domain analytical solution for a semi-batch gas-liquid contactor model is presented. The model assumes plug flow for the gas phase and a well mixed liquid for the liquid phase leading to a system of first-order partial differential-integral equations. It is shown that the method of characteristics combined with a transformation and the development of a special Cauchy problem leads to an analytical solution. The solution is useful for the dynamic study as well as for the experimental evaluation of mass transfer coefficients of gas-liquid contactors.  相似文献   

12.
探讨了填充密度对新型聚丙烯中空纤维膜接触器精馏过程中壳程传质的影响。中空纤维膜接触器在填充密度为4.7%、9.5%、19%时均可在远离常规填料液泛线以上的气速范围操作。低填充密度下,壳程的Sherwood数理论值大于实验值,但填充密度较高时,实验值大于理论值。高Reynolds数有利于壳程传质,低填充密度时的Sherwood数高于高填充密度时。随着F因子逐步增大,壳程气相传质阻力随之变小,且膜接触器的填充密度越高,气相传质阻力越大。3种不同填充密度膜接触器的气相总传质系数随着接触器填充密度的增大而迅速减小,由391.84×10-5 m·s-1降低为83.28×10-5 m·s-1。  相似文献   

13.
选用了三种不同材料的中空纤维膜(PP,PS和PES)构建新型膜接触器结构填料,并对异丙醇/水体系进行了精馏分离过程研究.在新型膜接触器中,液相和气相分别在管程和壳程进行逆向流动.实验结果表明:三种结构填料对异丙醇/水体系的分离效果依序为PES>PP>PS.不同材料的中空纤维膜作为结构填料对异丙醇/水溶液体系的分离效率均...  相似文献   

14.
膜接触器分离气体研究进展   总被引:2,自引:1,他引:1  
阐述了膜接触器分离气体的基本原理和组件设计,讨论了膜材料、吸收剂和流动方式的选择,列举了一些商业膜接触器。最后对膜接触器分离低浓度CO2气体的研究进行了展望。  相似文献   

15.
The proposed experimental contactor features uniformity of composition of both gas and liquid phases with independent control of individual film resistances and interfacial area. Tracer experiments showed a reasonable approach to phase uniformity, and experiments with four systems gave reliable, consistent mass transfer coefficients.This device which we call the double mixed contactor is especially suited for kinetic studies. It overcomes the shortcomings of present contactors and it extends the concept of gradientless reactors, so popular today for heterogeneous catalysis, to two fluid systems.  相似文献   

16.
PVDF中空纤维膜接触器分离烟气CO2   总被引:1,自引:0,他引:1       下载免费PDF全文
以水(H2O)、氢氧化钠(NaOH)、氨基乙酸钾(GLY)、氨基乙酸钾-哌嗪(GLY-PZ)水溶液为吸收剂,研究了疏水性聚偏氟乙烯(PVDF)中空纤维膜接触器分离CO2/N2模拟烟气中CO2的技术,具体考察了流动方式、气液流率、吸收液浓度和温度、原料气CO2浓度、填充密度等对膜接触器吸收效率的影响。结果表明,气液逆流的腔流程模式具有较高的分离效率。不同吸收剂的分离性能为:NaOH > GLY-PZ > GLY > H2O。温度对各种吸收剂的影响随其种类不同而有所差异。膜接触器对烟气CO2的分离效率随填充密度、吸收液浓度和流率的提高而增大,随气体流率及其中CO2浓度的增大而减小。  相似文献   

17.
The internal structure design of membrane module is very important for gas removal performance using membrane contactor via physical absorption. In this study, a novel membrane contactor developed by weaving polytetrafluoroethylene (PTFE) hollow fibers was applied to remove CO2 from 60% N2 + 40% CO2 mixture (with CO2 concentration similar to that of biogas) at elevated pressure (0.8 MPa) using water as absorbent. Compared with the conventional module with randomly packed straight fibers, the module with woven PTFE fibers exhibited much better CO2 absorption performance. The weaving configuration facilitated the meandering flow or Dean vortices and renewing speed of water around hollow fibers. Meanwhile, the undesired influences such as channeling and bypassing were also eliminated. Consequently, the mass transfer of liquid phase was greatly improved and the CO2 removal efficiency was significantly enhanced. The effects of operation pressure, module arrangement, feed gas, and water flow rate on CO2 removal were systematically investigated as well. The overall mass‐transfer coefficient (KOV) varied from 1.96 × 10?5 to 4.39 × 10?5 m/s (the volumetric mass‐transfer coefficient KLa = 0.034–0.075 s?1) under the experimental conditions. The CO2 removal performance of novel woven fiber membrane contactor matched well with the simulation results. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2135–2145, 2018  相似文献   

18.
The recovery of phenol from aqueous solutions with CYANEX® 923 was studied. Classical dispersive extraction and three membrane extraction-stripping systems (bulk liquid membranes, three-phase hollow fiber contactor and two hollow fiber modules set-up) were used. It was found that CYANEX® 923 was a convenient carrier for recovery of phenol from aqueous streams in extraction-stripping membrane processes. The problem of emulsion formation, so important in dispersive extraction, was avoided. Both mass transfer experiments in different membrane systems and measurement of the dynamic interfacial tension demonstrated importance of the interfacial phenomena occurring in the stripping stage. A blocking of this interface was observed that resulted in a decrease of phenol mass transfer.  相似文献   

19.
An expert system for selecting a vapour-liquid contactor (SVLC) is described in this article. The objectives of this study are to investigate the potential application of expert systems to chemical process design, and to capture and codify human design expertise into computer programs. The SVLC is constructed by combining numerical computations with symbolic reasoning processes based on human expertise and available separation technology. It can help design engineers select a vapour-liquid contactor by following existing rules. Six most commonly used contactors (sieve, valve, bubble cap and dual flow tray as well as random and structured packing) were considered. The results show that the final selections are consistent with those practised in industry.  相似文献   

20.
膜接触器是一种通过膜作为两相之间的分离界面而实现相间传质的新型杂化膜过程,具体应用形式包括膜蒸馏、膜萃取、膜吸收、膜结构填料等.膜接触器使用微孔中空纤维膜将两流体分隔开,膜孔为两流体之间提供传质的场所.与传统接触分离器相比,新兴的膜接触器拥有分离效率高、工作范围宽、两相流速可单独控制以及结构紧凑等诸多独特的优点.文章着重于膜接触器及其相关过程在废水处理领域的最新研究成果和进展,具体分析比较了上述几种膜接触器的结构、工作原理和操作特点,充分展示了膜接触器在废水处理以及化工、医药、食品等领域特种分离中的广阔应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号