首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents a method of improving coarse fly ash in order to replace condensed silica fume in making high-strength concrete. The coarse fly ash, having the average median diameter about 90-100 μm, yields a very low pozzolanic reaction and should not be used in concrete. In order to improve its quality, the coarse fly ash was ground until the average particle size was reduced to 3.8 μm. Then, it was used to replace Portland cement type I by weights of 0%, 15%, 25%, 35%, and 50% to produce high-strength concrete. It was found that concrete containing the ground coarse fly ash (FAG) replacement between 15% and 50% can produce high-strength concrete and 25% cement replacement gave the highest compressive strength. In addition, the concrete containing FAG of 15-35% as cement replacement exhibited equal or higher compressive strengths after 60 days than those of condensed silica fume concretes. The results, therefore, suggest that the FAG with high fineness is suitable to use to replace condensed silica fume in producing high-strength concrete.  相似文献   

2.
The strengths and chloride penetration resistance of a series of high-performance concretes were measured after curing either at 23 °C or accelerated by heating to 65 °C. The results confirm that concretes containing silica fume (SF) or ternary blends of SF and ground granulated blast-furnace slag (GGBFS) exhibit improved chloride penetration resistance compared to those of plain Portland cement concretes. In addition, chloride penetration resistance of Portland cement concrete is adversely affected by accelerated curing. With the use of the ternary ordinary Portland cement (OPC)-SF-GGBFS binders, accelerated curing did not have detrimental effects on chloride penetration resistance and provided 18-h strengths in excess of 40 MPa.  相似文献   

3.
Copper slag is a by‐product generated during smelting to extract copper metal from the ore. The copper slag obtained may exhibit pozzolanic activity and may therefore be used in the manufacture of addition‐containing cements. In this paper the effect of the incorporation of the copper slag in cement is measured. Blends of copper slag with Portland cement generally possess properties equivalent to Portland cement containing fly ash, but very different to the silica fume incorporation. Copper slag and fly ash reduce the heat of hydration more effectively than silica fume in mortars. The replacement of 30% cement by copper slag reduces the flexural and compressive strength in a similar way to fly ash; however, after 28 days, the reduction is less than the percentage of substitution. Hydrated calcium aluminate phases were analysed using scanning electron microscopy (SEM) and X‐ray diffraction (XRD) techniques. The pozzolanic activity of copper slag is similar to that of fly ash and higher than silica fume. In the presence of low water/cement ratios, certain pozzolanic materials produce a very compact cement paste that limits the space available for hydration products, a determining factor in the formation of hydrated calcium aluminates. SEM was found to be a useful analytical technique when aluminates are formed and can be clearly detected by XRD. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
海工高性能混凝土用复合胶凝材料的试验研究   总被引:6,自引:0,他引:6  
施惠生  王琼 《水泥》2003,(9):1-5
在调查分析海工混凝土工程实例的基础上,试验研究了硅酸盐水泥中掺入矿粉、粉煤灰、硅灰等混合材料对海工混凝土性能的影响。研究结果表明,在硅酸盐水泥中掺加矿粉、粉煤灰、硅灰等混合材料可以改善海工混凝土的综合性能。矿物混合材料的复合掺入比单独掺入能更好地改善混凝土抗Cl^-侵蚀性能。海工专用复合胶凝材料生产时宜尽可能地采用多种混合材料。  相似文献   

5.
Kraft pulp fiber reinforced cement-based materials are being increasingly used where performance after exposure to environmental conditions must be ensured. However, significant losses in mechanical performance due to wet/dry cycling have been observed in these composites, when portland cement is the only cementitious material used in the matrix. In this research program, the effects of partial portland cement replacement with various supplementary cementitious materials were investigated. Binary, ternary, and quaternary blends of silica fume, slag, Class C fly ash, Class F fly ash, metakaolin, and diatomaceous earth/volcanic ash blends were examined for their effect on the degradation of kraft pulp fiber-cement composite mechanical properties (i.e., strength and toughness) during wet/dry cycling. After 25 wet/dry cycles, it was shown that binary composites containing 90% slag, 30% metakaolin, or greater than 30% silica fume did not exhibit any signs of degradation, as measured through mechanical testing and microscopy. Ternary blends containing 70% slag/10% metakaolin or 70% slag/10% silica fume were also effective in preventing degradation. A reduction in calcium hydroxide content and the stability of the alkali content due to supplementary cementitious material addition were shown to be primary mechanisms for improved durability.  相似文献   

6.
首先通过改变粉煤灰微珠掺量,确定满足快速修补要求的矿渣-粉煤灰微珠胶凝材料基体的最佳配比,再调节偏高岭土、硅灰掺量,研究其对复合胶凝材料凝结时间、力学性能和水化机理的影响。研究发现,偏高岭土对凝结时间的改变较硅灰更敏感。通过化学结合水测试,分析了不同硅灰和偏高岭土掺量对矿渣-粉煤灰微珠胶凝材料水化反应程度影响的原因。力学实验结果表明:矿渣-粉煤灰微珠胶凝基体复合掺加5%硅灰(质量分数)+15%偏高岭土(质量分数),试块2 h抗压强度为11.5 MPa、28 d抗压强度达到75.2 MPa,且呈现缓慢递增的趋势。  相似文献   

7.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

8.
In 1980 a sidewalk was built at Bécancour, Québec, with condensed silica fume concretes containing highly reactive aggregates. Eleven concrete mixes were used with cement quantities from 140 to 405 kg of cement per m3 and condensed silica fume substitutions varying from 10 to 40%. In spite of the great reactivity of the aggregates, the alkali-aggregate reaction is still under control. Microstructural studies of four particular concretes have been made after the first and third winters. No silicate gel has been observed in the two leaner mixes but some has been found in a few locations encircling coarse aggregate particles in the two richer mixes. The severe scaling problem observed in one of the concrete is characterized at the microstructure level by frequent unbonding of coarse aggregates and presence of converging cracks around the aggregates.  相似文献   

9.
The effect of mineral admixture and curing condition on the sorptivity of concrete are investigated. In the present work, the maximum particle size and the grading of coarse aggregate, the cement content and water/cement ratio of the concrete are kept constant. Then, in the ordinary Portland cement (OPC) 42.5 concrete, a portion of the sand is replaced by a mineral admixture such as fly ash (FA), limestone filler, sandstone filler or silica fume (SF). This paper presents the results of both the sorptivity coefficient and the compressive strength of OPC 42.5 concretes with these mineral admixtures, and concretes with OPC 32.5, blended cement (BC) or trass cement (TC). The results obtained indicate that the sorptivity coefficient of concrete decreases as the compressive strength of concrete increases. It is also shown that the sorptivity coefficient of concrete is very sensitive to the curing condition. The effect of curing condition on the sorptivity coefficient of concrete seems to be higher in low-strength concretes.  相似文献   

10.
This paper presents a part of the results of an ongoing laboratory work carried out to design a structural lightweight high strength concrete (SLWHSC) made with and without mineral admixtures. In the mixtures, basaltic-pumice (scoria) was used as lightweight aggregate.A control lightweight concrete mixture made with lightweight basaltic-pumice (scoria) containing normal Portland cement as the binder was prepared. The control lightweight concrete mixture was modified by replacing 20% of the cement with fly ash. The control lightweight concrete mixture was also modified by replacing 10% of the cement with silica fume. A ternary lightweight concrete mixture was also prepared modifying the control lightweight concrete by replacing 20% of cement with fly ash and 10% of cement with silica fume. Two normal weight concrete (NWC) were also prepared for comparison purpose.Fly ash and silica fume are used for economical and environmental concerns. Cylinder specimens with 150 mm diameter and 300 mm height and prismatic specimens with dimension 100×100×500 mm were cast from the fresh mixtures to measure compressive and flexural tensile strength. The concrete samples were cured at 65% relative humidity with 20 °C temperature. The density and slump workability of fresh concrete mixtures were also measured.Laboratory test results showed that structural lightweight concrete (SLWC) can be produced by the use of scoria. However, the use of mineral additives seems to be mandatory for production of SLWHSC. The use of ternary mixture was recommended due to its satisfactory strength development and environmental friendliness.  相似文献   

11.
Hydration of portland cement pastes containing three types of mineral additive; fly ash, ground-granulated slag, and silica fume was investigated using differential thermal analysis, thermogravimetric analysis (DTA/TGA) and isothermal calorimetry. It was shown that the chemically bound water obtained using DTA/TGA was proportional to heat of hydration and could be used as a measure of hydration. The weight loss due to Ca(OH)2 decomposition of hydration products by DTA/TGA could be used to quantify the pozzolan reaction. A new method based on the composition of a hydrating cement was proposed and used to determine the degree of hydration of blended cements and the degree of pozzolan reaction. The results obtained suggested that the reactions of blended cements were slower than portland cement, and that silica fume reacted earlier than fly ash and slag.  相似文献   

12.
Pozzolan cements are produced by adding pozzolans such as silica fume, rice husk ash, blast furnace slag, fly ash, trass in 20% replacement for Portland cement. On the 28th day of production, the produced specimens are stored in water, in MgSO4·7H2O (5%) solution and in HCl (pH = 2) solution. The strengths and weights were determined after the mortars are stored in solutions for 56 days. Compressive strengths of the mortars stored in water for 28 days are silica fume, rice husk ash, and control, 43.3, 40.1, and 31.0 MPa, respectively. The highest loss of compressive strength is 20% and the highest gain of weight is 4.2%, occurring in blast furnace slag mortar in MgSO4.  相似文献   

13.
The microstructural and microchemical development of heat-cured Portland cement mortars containing silica fume, metakaolin, blast-furnace slag, and fly ash were analysed using pore solution analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). Incorporation of these materials into the mixture modifies the composition of the C-S-H gel, the quantities of the hydration products, and the microstructure. Ettringite was formed during moist storage in all specimens, but was not accompanied by expansion where a sufficient amount of metakaolin, blast-furnace slag, or a suitable fly ash replaced a proportion of the Portland cement; replacement with silica fume was not as effective at eliminating expansion. The different behaviour of silica fume from the other supplementary cementing materials is believed to reflect a difference in the way ettringite is formed in the presence of Al2O3-bearing mineral admixtures.  相似文献   

14.
Mechanical properties of polymer-modified lightweight aggregate concrete   总被引:2,自引:0,他引:2  
This paper deals with the properties of styrene-butadiene rubber (SBR)-modified lightweight aggregate concretes (LWACs) for thin precast components, made with two Brazilian lightweight aggregates (LWAs). Properties in the fresh state, compressive strength, splitting tensile strength, flexural strength, and water absorption of LWACs were tested. The 7-day compressive strength and the dry concrete density vary from 39.7 to 51.9 MPa and from 1460 to 1605 kg/m3, respectively. The inclusion of SBR latex in LWACs decreases the water-(cement+silica fume) [W/(C+S)] ratio and water absorption and increases the splitting tensile and flexural strengths. The results of this pilot study suggest that there are possibilities of producing thin precast components using SBR-modified LWACs with Brazilian LWAs.  相似文献   

15.
The influence of high-temperature and low-humidity curing on chloride penetration in concrete containing cement replacement materials was investigated. Three different mixes were studied: a control mix in which no cement replacement materials were added and two mixes where cement was partially replaced by 20% fly ash and 9% silica fume (by weight), respectively, at a constant water-to-binder ratio of 0.45. High-temperature curing was employed to simulate concrete temperature in hot climate. The results show that at early periods of exposure, initial curing has a substantial influence on chloride penetration in concrete. The effect of initial curing is much reduced after a long period of exposure. The chloride penetration at early ages of exposure is directly related to the porosity of the binder phase and the absorption of concrete. Higher chloride penetration resistance was observed when cement is partially replaced with either fly ash or silica fume.  相似文献   

16.
Thermal conductivity coefficients of concretes made up of mixtures of expanded perlite and pumice aggregates (PA) were measured. To determine the effect of silica fume (SF) and class C fly ash (FA) on the thermal conductivity of lightweight aggregate concrete (LWAC), SF and FA were added as replacement for cement by decreasing the cement weights in the ratios of 10%, 20% and 30% by weight.The highest thermal conductivity of 0.3178 W/mK was observed with the samples containing only PA and plain cement. It decreased with the increase of SF and FA as replacement for cement. The lowest value of thermal conductivity, which is 0.1472 W/mK, was obtained with the samples prepared with expanded perlite aggregate (EPA) replacement of PA and 70% cement+30% FA replacement of cement. Both SF and FA had a decreasing effect on thermal conductivity. EPA (used in place of PA) also induced a decrease of 43.5% in thermal conductivity of concrete.  相似文献   

17.
The compactness and fluidity of binary and ternary compound paste systems containing ultrafine powders such as pulverized fly ash (PFA), pulverized granulated blast furnace slag (PS) and silica fume (SF) were quantitatively studied with the relative density (d/d0) index. Through optimization of the proportions of compositions and applying heat treatment to specimens, a very-high-performance concrete (VHPC) including large quantities of ultrafine powders has been made successfully, which offers compressive strength up to 200 MPa. Two methods of overcoming the brittleness of VHPC were investigated.  相似文献   

18.
根据国家标准对海工水泥原材料组成的要求,本文以粉煤灰、矿粉、硅灰为混合材与硅酸盐水泥熟料、石膏复合,通过水泥砂浆物理性能试验、抗渗性能试验、抗硫酸盐侵蚀试验和混凝土氯离子扩散系数试验,优化、确定了海工水泥合理的原材料组成范围。试验结果表明,当熟料掺量≥33%,硅灰掺量≤3%时,所制备的海工水泥的力学性能满足国家标准42.5级海工水泥的要求;以33%的熟料、7%的石膏、17%的粉煤灰、40%的矿粉和3%的硅灰制备的海工水泥具有较好的早期、后期强度和良好的耐久性能。XRD和SEM分析结果表明,与普通硅酸盐水泥相比,海工水泥水化体系中AFt含量多,可提高水泥石的致密度,减小孔隙率,使水泥硬化体具有优异的力学性能和耐久性能。  相似文献   

19.
《Fuel》2006,85(14-15):2018-2026
Fly ash is a waste material from coal-burning power plants that consume pulverized solid fuels. Two fly ashes from Asturias (Spain) were activated mechanically by wet milling and chemically by leaching with sulfuric acid. The activated fly ashes were characterized in terms of physico-chemical characterization, granulometry, density, blaine, BET, XRD and SEM.A comparative study was carried out of several mortars, in some cases using different additions of silica fume or activated fly ash. The influence that these additives have on the mechanical resistance of the mortars was studied. As well as the possible use of these activated fly ashes as a replacement for silica fume in producing high-strength mortar or concrete. It was found that mortars containing activated fly ash presented higher compressive strengths.A mercury intrusion porosimetry study was carried out on cement mortars made with mineral additives such as silica fume and activated fly ashes. In general, the porosities values of these mortars showed that mineral admixtures improved mechanical resistance due to the decrease in pore size.  相似文献   

20.
矿物掺合料混凝土碳化性能试验研究   总被引:7,自引:1,他引:6  
通过快速碳化试验,综合考虑水胶比、掺合料种类、掺量等因素,对掺合料混凝土碳化规律进行了研究.结果表明:低水胶比是保证掺合料混凝十具有较高抗碳化能力的重要手段之一.掺合料总掺量相同时,掺合料混凝土抗碳化能力从高到低依次为:三掺粉煤灰+矿渣+硅灰,双掺粉煤灰+矿渣,双掺粉煤灰+硅灰,单掺矿渣,单掺粉煤灰,单掺硅灰.合理双掺粉煤灰+矿渣或三掺粉煤灰+矿渣+硅灰,不仅能使混凝土获得满足要求的抗碳化能力,还可以大大提高水泥取代量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号