首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In human B lymphoma Namalwa variant cells expressing the serpin-like CrmA protein, the kinetics of oligonucleosome-sized DNA fragmentation was retarded compared with that of control Namalwa cells following camptothecin treatment. However, no difference in the kinetics of high molecular weight DNA fragmentation was observed between the two lines after camptothecin treatment. Similar delay and inhibition of the oligonucleosome-sized DNA fragmentation was observed in human B lymphoma Namalwa and monocytic-like leukemia U-937 cells coincubated in the presence of various concentrations of N-tosyl-L-phenylalanyl chloromethylketone and camptothecin. The effect of N-tosyl-L-phenylalanyl chloromethylketone was similar to that of CrmA and did not prevent the appearance of high molecular weight DNA fragments. Similar suppression of camptothecin-induced internucleosomal DNA fragmentation was also observed in a cell-free system when cytosolic extracts obtained from camptothecin-treated Namalwa and U-937 cells were coincubated with untreated nuclei in the presence of N-tosyl-L-phenylalanyl chloromethylketone. Furthermore, N-tosyl-L-phenylalanyl chloromethylketone had no significant effects on caspase-3-like activities in camptothecin-treated Namalwa and U-937 cells. Hydrolysis of Ac-Asp-Glu-Val-Asp-amino-4-methylcoumarin, a fluorogenic substrate with caspase-3-like activities, was detected in extracts prepared from camptothecin-treated Namalwa and U-937 cells with no apparent difference in the time courses of caspase-3-like activation in the absence or presence of N-tosyl-L-phenylalanyl chloromethylketone. Similarly, N-tosyl-L-phenylalanyl chloromethylketone was a weak inhibitor of caspase-3-like activities in vitro. Taken together, these observations suggest that the pathway sensitive to N-tosyl-L-phenylalanyl chloromethylketone is involved in camptothecin-induced oligonucleosome-sized DNA fragmentation. Furthermore, inhibition of this pathway had no effect on caspase-3-like activation and on the occurrence of high molecular weight DNA fragmentation.  相似文献   

2.
We report here the reconstitution of a pathway that leads to the apoptotic changes in nuclei by using recombinant DNA fragmentation factor (DFF), a heterodimeric protein of 40 and 45 kDa. Coexpression of DFF40 and DFF45 is required to generate recombinant DFF, which becomes activated when DFF45 is cleaved by caspase-3. The cleaved fragments of DFF45 dissociate from the DFF40, the active component of DFF. Purified DFF40 exhibited an intrinsic DNase activity that was markedly stimulated by chromatin-associated proteins histone H1 and high mobility group proteins. DFF40 also triggered chromatin condensation when incubated with nuclei. These data suggest that DFF40 is sufficient to trigger both DNA fragmentation and chromatin condensation during apoptosis.  相似文献   

3.
The molecular genetics and bioenergetics of oxidative damage, fragmentation, and fragility of mitochondrial DNA in cellular apoptosis is reviewed in connection with the "redox mechanism of ageing."  相似文献   

4.
Caspase 3-like proteases are key executioners in mammalian apoptosis, and the calpain family of cysteine proteases has also been implicated as an effector of the apoptotic cascade. However, the influence of upstream events on calpain/caspase activation and the role of calpain/caspase activation on subsequent downstream events are poorly understood. This investigation examined the temporal profile of apoptosis-related events after staurosporine-induced apoptosis in mixed glial-neuronal septo-hippocampal cell cultures. Following 3 hr exposure to staurosporine (0.5 microM), calpain and caspase 3-like proteases processed alpha-spectrin to their signature proteolytic fragments prior to endonuclease-mediated DNA fragmentation (not evident until 6 hr), indicating that endonuclease activation is downstream from calpain/caspase activation. Cycloheximide, a general protein synthesis inhibitor, completely prevented processing of alpha-spectrin by calpains and caspase 3-like proteases, DNA fragmentation and cell death, indicating that de novo protein synthesis is an upstream event necessary for activation of calpains and caspase 3-like proteases. Calpain inhibitor II and the pan-caspase inhibitor Z-D-DCB each inhibited their respective protease-specific processing of alpha-spectrin and attenuated endonuclease DNA fragmentation and cell death. Thus, activation of calpains and caspase 3-like proteases is an early event in staurosporine-induced apoptosis, and synthesis of, as yet, unknown protein(s) is necessary for their activation.  相似文献   

5.
6.
The objective of this study was to compare the results of three nociceptive tests, tail-flick, hot-plate and electrical stimulation vocalisation, reflecting the responses from different sites in the CNS. A subcutaneous morphine dose (5 mg/kg) was administered to three parallel groups of rats in which the nociceptive response was measured by one of the three methods. The baseline decreased during the period of measurement for the hot-plate test, but remained stable for the other methods. The spinally mediated tail-flick response was more sensitive to the morphine effects as compared to the supraspinally mediated hot-plate and electrical stimulation vocalisation responses. The electrical stimulation vocalisation-test demonstrated more even effect-time profiles and less variability among the rats than did the tail-flick and the hot-plate methods. In the tail-flick group, 59% of the observations attained the cut-off latency at this morphine dose, leading to underestimation of the peak effect, the area under the effect curve (AUEC), and the variability among the rats. In the hot-plate group, 13% of the observations were at the cut-off latency, and 2% in the electrical stimulation vocalisation group. Different ways of presenting the data are discussed. In conclusion, the test selected for measuring the nociceptive response will influence the effect-time profile and subsequently any pharmacodynamic parameters describing it.  相似文献   

7.
DNA fragmentation was examined in situ in flash-frozen human postmortem midbrain as a marker for programmed cell death. A large series of cases comprising 16 pathologically confirmed idiopathic Parkinson's disease (IPD) cases, 14 control cases without brain pathology, and a group of 6 patients with other parkinsonian movement disorders were examined using TdT-mediated dUTP-biotin 3' end-labeling histology. Labeling of neurons and glia was seen in the substantia nigra of control and IPD cases and in other movement disorder cases. Labeled nuclei were seen in melanized nigral neurons; apoptotic bodies were also found but were more commonly associated with nigral glia. In the control group, labeling of neurons and glia was strongly associated with poor agonal status, assessed by tissue pH, a marker for antemortem hypoxia. The mean tissue pH of the control group with neuronal labeling was 6.28 (SEM .057), which was significantly different from that of the unlabeled group 6.55 (SEM .055). Mean tissue pH for all cases was 6.38. There was no association of nigral neuronal labeling with poor agonal status in the IPD cases, which showed labeling throughout the range of pH values. However, extranigral labeling, seen in the mesencephalon, red nucleus, superior colliculus, rostral pons, and periaqueductal gray matter, in all three subject groups was associated with tissue pH values of less than 6.3. These findings suggest that DNA fragmentation is influenced by antemortem hypoxia and that apoptosis-like changes seen in the postmortem nigra may parallel those seen in experimental ischemia in the animal brain. The likely influence of perimortem factors on these changes indicates that results from postmortem studies of apoptotic cell death in neurodegenerative disease should be treated with caution and underlines the importance of determining postmortem markers for agonal status in human brain.  相似文献   

8.
To simply and directly evaluate DNA fragmentation during apoptosis induced in mouse cultured hepatocytes by an anti-Fas antibody, we examined the fluorescence intensity in cell nuclei stained with ethidium bromide and 4'-6-diamidino-2-phenylindole by optiphoto fluorescence microscopy. The intensity of the former staining for the nuclear DNA of apoptotic cells was clearly decreased compared to that of non-apoptotic cells, whereas no difference in the fluorescence intensity for the latter stain between the apoptotic and non-apoptotic groups was observed. Thus, the use of optiphoto fluorescence microscopy, in conjunction with both stains, constitutes a useful tool for the evaluation of apoptotic DNA fragmentation.  相似文献   

9.
C6 glioma cells treated with 10 mM glutamate reduced intracellular GSH to one-seventh of the initial level, and induced cytolysis accompanied by apoptosis. The treated cells produced extracellular H2O2. The cytolysis of the C6 cells induced by glutamate was prevented by antioxidants such as N-acetylcysteine (NAC), ascorbic acid (ASC), catalase, and NaN3, iron chelators such as deferoxamine and 1,10-phenanthroline, and oxygen radical scavengers such as 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) and alpha-phenyl-tert-butyl nitrone (PBN). The effect of these antioxidants, iron chelators, and oxygen radical scavengers on the cytolysis of C6 cells was dependent on the dose and the intracellular GSH level. Furthermore, 1-2 Mbp chromosomal DNA (giant DNA) fragments were observed during cytolysis. The giant DNA fragments were further cleaved into smaller DNA fragments of 200-800 kbp, and then to fragments of less than 300 kbp in size including chromosomal ladder DNA fragments. Such serial chromosomal DNA degradations induced by glutamate were also inhibited by addition of these antioxidants, iron chelators, and oxygen radical scavengers. These findings suggest that glutamate induces GSH depletion, and consequently, apoptosis through endogenously produced active oxygen species in C6 glioma cells and that the apoptosis is accompanied by 1-2 Mbp giant DNA fragmentation prior to the internucleosomal DNA fragmentation.  相似文献   

10.
Interleukin 1beta-converting enzyme-like proteases (caspases) are crucial components of cell death pathways. Among the caspases identified, caspase-3 stands out because it is commonly activated by numerous death signals and cleaves a variety of important cellular proteins. Studies in caspase-3 knock-out mice have shown that this protease is essential for brain development. To investigate the requirement for caspase-3 in apoptosis, we took advantage of the MCF-7 breast carcinoma cell line, which we show here has lost caspase-3 owing to a 47-base pair deletion within exon 3 of the CASP-3 gene. This deletion results in the skipping of exon 3 during pre-mRNA splicing, thereby abrogating translation of the CASP-3 mRNA. Although MCF-7 cells were still sensitive to tumor necrosis factor (TNF)- or staurosporine-induced apoptosis, no DNA fragmentation was observed. In addition, MCF-7 cells undergoing cell death did not display some of the distinct morphological features typical of apoptotic cells such as shrinkage and blebbing. Introduction of the CASP-3 gene into MCF-7 cells resulted in DNA fragmentation and cellular blebbing following TNF treatment. These results indicate that although caspase-3 is not essential for TNF- or staurosporine-induced apoptosis, it is required for DNA fragmentation and some of the typical morphological changes of cells undergoing apoptosis.  相似文献   

11.
Although widely used, terms associated with consumption of alcohol--such as "light," "moderate," and "heavy"--are unstandardized. Physicians conveying health messages using these terms therefore may impart confusing information to their patients or to other physicians. As an initial attempt to assess if informal standardization exists for these terms, the present study surveyed physicians for their definitions of such terms. Physicians operationally defined "light" drinking as 1.2 drinks/day, "moderate" drinking as 2.2 drinks/day, and "heavy" drinking as 3.5 drinks/day. Abusive drinking was defined as 5.4 drinks/day. There was considerable agreement for these operational definitions, indicating there is indeed an informal consensus among physicians as to what they mean by these terms. Gender and age did not influence these definitions, but self-reported drinking on the part of physicians was a factor. We also asked physicians for their opinions regarding the effects of "light," "moderate," and "heavy" drinking on health in general and specifically on health-related implications for pregnant women, and whether they felt their patients shared these beliefs.  相似文献   

12.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric nuclease complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we generated DFF45 mutant mice. DNA fragmentation activity is completely abolished in cell extracts from DFF45 mutant tissues. In response to apoptotic stimuli, splenocytes, thymocytes, and granulocytes from DFF45 mutant mice are resistant to DNA fragmentation, and splenocytes and thymocytes are also resistant to chromatin condensation. Nevertheless, development of the immune system in the DFF45 mutant mice is normal. These results demonstrate that DFF45 is critical for the induction of DNA fragmentation and chromatin condensation in vivo, but is not required for normal immune system development.  相似文献   

13.
The caspase-3 has been shown to be involved in mediating apoptosis induced by different stimuli. However, it is still unclear whether p53 is required for the ionizing radiation (IR)-induced caspase-3 activation. In the present study, we examined IR-induced apoptosis in three closely related human lymphoblast cell lines that differ in p53 status. Irradiation of TK6 cells (wild-type p53) with 4 Gy gamma-rays resulted in rapid apoptosis, whereas the apoptotic response was delayed and reduced in WTK1 cells (mutant p53) and the TK6 derivative line expressing HPV16 E6 (abrogated p53). The differential apoptotic responses in these cell lines correlated with caspase-3 activation. IR induced an early as well as a late phase of caspase-3 activation in TK6 but only a delayed onset in WTK1 and TK6-E6-5E cells. The early phase of caspase-3 activation coincided with an elevation of p53 and bax protein levels. Pretreatment of all three cell lines with a caspases inhibitor z-VAD-FMK inhibited apoptosis. These results suggest that IR-induced apoptosis is mediated by a mechanism involving the caspase-3 cascade, which is shared by both p53-dependent and -independent pathways. The activation of caspase-3 by IR may thus engage at least two separate mechanisms, one through the regulation of the bcl-2 family members by p53, whereas the other yet-to-be-identified one involves neither p53 nor bax.  相似文献   

14.
Caspases plays a key role in the execution phase of apoptosis. "Initiator" caspases, such as caspase-8, activate "effector" caspases, such as caspase-3 and -7, which subsequently cleave cellular substrates thereby precipitating the dramatic morphological changes of apoptosis. Following treatment of mice with an agonistic anti-Fas antibody to induce massive hepatocyte apoptosis, we now demonstrate a distinct subcellular localization of the effector caspases-3 and -7. Active caspase-3 is confined primarily to the cytosol, whereas active caspase-7 is associated almost exclusively with the mitochondrial and microsomal fractions. These data suggest that caspases-3 and -7 exert their primary functions in different cellular compartments and offer a possible explanation of the presence of caspase homologs with overlapping substrate specificities. Translocation and activation of caspase-7 to the endoplasmic reticulum correlates with the proteolytic cleavage of the endoplasmic reticular-specific substrate, sterol regulatory element-binding protein 1. Liver damage, induction of apoptosis, activation and translocation of caspase-7, and proteolysis of sterol regulatory element-binding protein 1 are all blocked by the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD. fmk). Our data demonstrate for the first time the differential subcellular compartmentalization of specific effector caspases following the induction of apoptosis in vivo.  相似文献   

15.
The tumor-suppressing phenotype of p53 is thought to be due to its accumulation in response to DNA damage and resultant cell cycle arrest or apoptosis. scid/scid mice are defective in DNA double-strand break repair due to a mutation in DNA-dependent protein kinase (DNAPK). Treatment of scid/scid mice with gamma radiation or N-ethyl-N-nitrosourea resulted in approximately 86% incidence of T-cell lymphomas, compared with <6% in wild-type mice. The incidence of other tumor types was not increased in scid/scid mice, suggesting that the types of DNA double-strand break that are unrepaired in these mice are not strongly carcinogenic. To determine whether mutations in DNAPK and p53 interact, we examined mice deficient in both genes. Both scid/scid p53-/- and scid/scid p53+/- mice spontaneously developed lymphomas at shorter latency than did mice with either defect alone. Loss of the wild-type p53 allele was observed in 100% of tumors from scid/scid p53 +/- mice, indicating strong selection against p53. In contrast, p53 was not inactivated in lymphomas from scid/scid p53+/+ mice. Exposure of these tumor-bearing mice to gamma radiation resulted in p53 protein accumulation and high levels of apoptosis in all tumors that were not observed in tumors from scid/scid p53+/- mice. Thus, there was a bifurcation of molecular pathways to tumorigenesis. When p53 was heterozygous in the germ line, loss of the wild-type allele occurred, and the tumors became apoptosis resistant. When p53 was wild type in the germ line, p53 was not inactivated, and the tumors remained highly apoptosis sensitive.  相似文献   

16.
Atypical meningioma has been introduced as tumour subtype of intermediate biological behaviour between classical and malignant meningiomas. To substantiate this three-step scale of malignancy, we assessed the proliferative activity reflected by Ki-67 (MIB1) labelling index (LI) in a series of 89 meningiomas, including 15 classical, 29 atypical, 35 anaplastic tumours, and 10 haemangiopericytomas and papillary meningiomas. The possible correlation of proliferation with the frequency of apoptosis and their relations to BCL-2 immunoexpression was investigated in seven classical, 10 atypical and 10 malignant meningiomas. Apoptosis was demonstrated by evaluation of the frequency of apoptotic figures, by the enzymatic technique of in situ tailing (IST) which stains apoptotic DNA fragments, and by DNA preparation and gel electrophoresis demonstrating DNA laddering in frozen tissues of five meningiomas. MIB1 LI revealed a highly significant increase from classical through atypical to anaplastic meningiomas (P < 0.0001); haemangiopericytomas and papillary meningiomas were well within the range of atypical meningiomas. IST indices rose with increasing malignancy and correlated with MIB1 LI (P < 0.0001): they showed a weak inverse correlation with BCL-2 immunoexpression (P = 0.05). BCL-2 expression tended to decrease with malignancy grade and was unrelated to MIB1 LI or frequency of apoptosis. Our data show that (i) apoptosis is a feature of meningiomas, significantly correlated with the malignancy scale. (ii) DNA fragmentation shows significant correlation with proliferation and inversely with BCL-2 expression; (iii) proliferation indices and frequencies of apoptosis/DNA fragmentation within meningioma subgroups corroborate the intermediate biological position of the atypical meningioma between classical and malignant meningiomas.  相似文献   

17.
Three chemically distinct serine, but not cysteine, protease inhibitors (phenylmethylsulphonyl fluoride, N-tosyl-L-phenylalanylchloromethyl ketone and 3,4-dichloroisocoumarin) prevented, in a dose-dependent manner, the characteristic apoptotic internucleosomal DNA cleavage (DNA ladder) typically observed in thymocytes in response to dexamethasone and teniposide VM-26. This effect was not the result of a direct inhibition of the Ca2+,Mg(2+)-dependent endonuclease, since oligonucleosomal DNA cleavage occurred in the presence of these inhibitors in isolated nuclei. The proteolytic step occurred at a very early stage of apoptosis, and preincubation of thymocytes with the inhibitors before dexamethasone or teniposide VM-26 were added irreversibly suppressed ladder formation. This implied that the cellular effector(s) of these compounds preexisted and were not resynthesized in response to the inducers of apoptosis. Serine protease inhibitors also suppressed apoptotic cell shrinkage and complete nuclear collapse, suggesting that these morphological changes were directly related to internucleosomal fragmentation of DNA. However, the serine protease inhibitors did not prevent high molecular weight DNA cleavage (> 50 kilobases) that preceded the ladder formation and thymocytes still died by apoptosis. This supported the view that internucleosomal DNA cleavage, considered to be the biochemical marker of apoptosis, might in fact be a late and dispensable step and that the newly described high molecular weight DNA cleavage might be a better indicator of apoptosis.  相似文献   

18.
19.
Release of cytochrome c is important in many forms of apoptosis. Recent studies of CD95 (Fas/APO-1)-induced apoptosis have implicated caspase-8 cleavage of Bid, a BH3 domain-containing proapoptotic member of the Bcl-2 family, in this release. We now demonstrate that both receptor-induced (CD95 and tumor necrosis factor) and chemical-induced apoptosis result in a similar time-dependent activation of caspases-3, -7, -8, and -9 in Jurkat T cells and human leukemic U937 cells. In receptor-mediated apoptosis, the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD. FMK), inhibits apoptosis prior to commitment to cell death by inhibiting the upstream activator caspase-8, cleavage of Bid, release of mitochondrial cytochrome c, processing of effector caspases, loss of mitochondrial membrane potential, and externalization of phosphatidylserine. However, Z-VAD.FMK inhibits chemical-induced apoptosis at a stage after commitment to cell death by inhibiting the initiator caspase-9 and the resultant postmitochondrial activation of effector caspases. Cleavage of Bid but not release of cytochrome c is blocked by Z-VAD.FMK demonstrating that in chemical-induced apoptosis cytochrome c release is caspase-independent and is not mediated by activation of Bid. We propose that caspases form an integral part of the cell death-inducing mechanism in receptor-mediated apoptosis, whereas in chemical-induced apoptosis they act solely as executioners of apoptosis.  相似文献   

20.
DNA gyrase and topoisomerase IV are the two type II topoisomerases present in bacteria. Though clearly related, based on amino acid sequence similarity, they each play crucial, but distinct, roles in the cell. Gyrase is involved primarily in supporting nascent chain elongation during replication of the chromosome, whereas topoisomerase IV separates the topologically linked daughter chromosomes during the terminal stage of DNA replication. These different roles can be attributed to differences in the biochemical properties of the two enzymes. The biochemical activities, physiological roles, and drug sensitivities of the enzymes are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号