首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The process performance and metabolic rates of several samples of activated sludge which were dosed with micronutrient supplements have been compared in this study. Six trace metals and six vitamins were used as chemical additives dosed into the mixed liquor. It was confirmed experimentally that a wastewater stream from a chemicals manufacturing plant did not contain a sufficient supply of micronutrients for efficient biological treatment. This was concluded from the observation that control sludge batches (receiving no micronutrient supplements) attained an average chemical oxygen demand (COD) removal rate of 1.94 kg COD kg MLSS−1 d−1. Dosing micronutrients into the mixed liquor produced COD removal rates of up to 2.24 kg COD kg MLSS−1 d−1. Some of the supplements increased the metabolic rate of the sludge while some decreased it, indicating a range of stimulatory and inhibitory effects. Complex interactions between micronutrients that were dosed simultaneously were evident. Several positive effects led to the conclusion that micronutrient supplements have the potential to optimise the process performance of activated sludge plants treating industrial wastewater.  相似文献   

2.
The aims of this study were to demonstrate the (1) feasibility of psychrophilic, or low-temperature, anaerobic digestion (PAD) of phenolic wastewaters at 10–15 °C; (2) economic attractiveness of PAD for the treatment of phenol as measured by daily biogas yields and (3) impact on bioreactor performance of phenol loading rates (PLRs) in excess of those previously documented (1.2 kg phenol m−3 d−1). Two expanded granular sludge bed (EGSB)-based bioreactors, R1 and R2, were employed to mineralise a volatile fatty acid-based wastewater. R2 influent wastewater was supplemented with phenol at an initial concentration of 500 mg l−1 (PLR, 1 kg m−3 d−1). Reactor performance was measured by chemical oxygen demand (COD) removal efficiency, CH4 composition of biogas and phenol removal (R2 only). Specific methanogenic activity, biodegradability and toxicity assays were employed to monitor the physiological capacity of reactor biomass samples. The applied PLR was increased to 2 kg m−3 d−1 on day 147 and phenol removal by day 415 was 99% efficient, with 4 mg l−1 present in R2 effluent. The operational temperature of R1 (control) and R2 was reduced by stepwise decrements from 15 °C through to a final operating temperature of 9.5 °C. COD removal efficiencies of c. 90% were recorded in both bioreactors at the conclusion of the trial (day 673), when the phenol concentration in R2 effluent was below 30 mg l−1. Daily biogas yields were determined during the final (9.5 °C) operating period, when typical daily R2 CH4 yields of c. 3.3 l CH4 g−1 CODremoved d−1 were recorded. The rate of phenol depletion and methanation by R2 biomass by day 673 were 68 mg phenol g VSS−1 d−1 and 12–20 ml CH4 g VSS−1 d−1, respectively.  相似文献   

3.
Priya M  Haridas A  Manilal VB 《Water research》2007,41(20):4639-4645
It is only very rarely recognised in literature that anaerobic reactors may contain protozoa in addition to various bacterial and archeal groups. The role of protozoa in anaerobic degradation was studied in anaerobic continuous stirred tank reactors (CSTR) and batch tests. Anaerobic protozoa, especially the ciliated protozoa, have direct influence on the performance of CSTR at all organic loading rates (1–2 g COD l−1 d−1) and retention times (5–10 days). The studies revealed that chemical oxygen demand (COD) removal is strongly correlated to ciliate density in CSTR fed with oleate (suspended COD) and acetate (soluble COD). There was no significant difference in COD removal between reactors fed suspended COD and those fed soluble COD. However, the diversity and number of ciliates is greater in CSTR fed with particulate feed. The mixed liquor suspended solids (MLSS) representing biomass was significantly lower (16–34%) in CSTR with protozoa. In batch tests, increased COD removal and methane production was observed in sludge having ciliates as compared with sludge without protozoa. Methane production increased linearly with number of ciliates (R2=0.96) in batch tests with protozoa. Direct utilization of COD by flagellates and ciliates was observed in bacteria-suppressed cultures. The technological importance of these results is that reactors with protozoa-rich sludge can enhance the rate of mineralization of complex wastewater, especially wastewater containing particulate COD.  相似文献   

4.
N.F Gray  M.A Learner 《Water research》1984,18(12):1509-1513
Estimation of film accumulation is necessary for the successful operational management of percolating filters. Prevention of ponding and loss of performance due to excessive film accumulation, and the optimization of the recirculation and alternating double filtration processes can only be achieved by regular monitoring of film growth. Five methods of determining film accumulation are compared; total film weight, total dry solids, volatile solids, percentage settlement of solids and the neutron scattering technique. The methods were used to monitor the film growth in pilot filters containing a mineral and a random plastics medium, over two twelve-month loading periods at 1.68 m3 m−3 day−1 (0.28 kg BOD m−3 day−1) and 3.37 m3 m−3 day−1 (0.63 kg BOD m−3 day−1).

Good correlations (P < 0.001) are found between all methods at the lower loading although the neutron scattering results are not significantly correlated (P > 0.10) with any of the gravimetric methods at the higher loading. Although the neutron scattering technique does provide a rapid and sensitive measure of hydrogen atoms in the filter, the results, expressed as percentage saturation of the voids, are not directly transferable to film weights and should be treated separately and not as a true measure of film accumulation.  相似文献   


5.
Uptake of cadmium by microbes at different temperatures has been studied at pH 7. Glycine was used as a source of carbon for microorganisms in the BOD bottle at 20, 30, 40 and 50°C with varying concentrations of cadmium: control 0.0437, 0.437, 0.875 and 1.31 mg 1−1 in each set. The influence of temperatures on the toxic effects of cadmium has been studied with respect to rate constant (k) and ultimate biochemical oxygen demand which were calculated from BOD data using Thomas Graphical method. Consumed cadmium mg 1−1 was determined after eight days and it varied from 14.04 to 32.40% at four temperatures. Highest consumption of Cd was noted in the set at 30 and 40°C and lowest at 50°C.  相似文献   

6.
Some types of industrial waste water contain high concentration of ammonia, which makes nitrification too costly. It has been found, that ion exchange is an attractive alternative, even the waste water contains such high concentration of competitive ions at 1 g 1−1 Ca2+ and 5 g 1−1 Na+. However it was found, that the pH increased during the treatment due to the release of OH- ions left in the interstitial water. Since it is essential for the efficiency that pH is 7·0 or lower, it was necessary to rinse the ion exchangers with acid. The observed data by column experiments agree with the equilibrium data found.  相似文献   

7.
S. Krner  J. E. Vermaat 《Water research》1998,32(12):3651-3661
To arrive at detailed nutrient balances for duckweed-covered wastewater treatment systems, five laboratory-scale experiments were carried out in shallow (3.3 cm), 1 l batch systems to assess separately the contributions of duckweed itself, attached and suspended bacteria as well as algae to N- and P-removal in domestic wastewater. Depending on the initial concentrations, our duckweed-covered systems removed 120–590 mg N m−2 d−1 (73–97% of the initial Kjeldahl-nitrogen) and 14–74 mg P m−2 d−1 (63–99% of the initial total phosphorus) in 3 days. Duckweed (Lemna gibba L.) itself was directly responsible for 30–47% of the total N-loss by uptake of ammonium and, probably dependent on the initial P-concentrations, for up to 52% of the total P-loss. The indirect contribution of duckweed to the total nutrient removal was also considerable and included the uptake (and adsorption) of ammonium and ortho-phosphate by algae and bacteria in the attached biofilm and the removal of N through nitrification/denitrification by bacteria attached to the duckweed. Together these accounted for 35–46 and 31–71% of the total N- and P-loss, respectively. Therefore, approximately of the total N- and P-loss could be attributed to the duckweed mat. The remaining quarter is due to non-duckweed related components: uptake and nitrification/denitrification by algae and bacteria attached to the walls and the sediment of the system (including sedimentation). Other processes, like NH3-volatilisation, N-fixation and nutrient uptake as well as nitrification/denitrification by suspended microorganisms did not influence the N- and P-balance of our systems, but could become important with increasing water depths and retention times.  相似文献   

8.
Zero net growth in a membrane bioreactor with complete sludge retention   总被引:5,自引:0,他引:5  
A bench-scale membrane bioreactor was operated with complete sludge retention in order to evaluate biological processes and biomass characteristics over the long term. The investigation was carried out by feeding a bench-scale plant with real sewage under constant volumetric loading rate (VLR=1.2 gCOD Lreact−1 h−1). Biological processes were monitored by measuring substrate removal efficiencies and biomass-related parameters. The latter included bacterial activity as determined through respirometric tests specifically aimed at investigating long term heterotrophic and nitrifying activity. After about 180 days under the imposed operating conditions, the system reached equilibrium conditions with constant VSS concentration of 16–18 g L−1, organic loading rate (OLR) below 0.1 gCOD gVSS−1 d−1 and specific respiration rates of 2–3 mgO2 gVSS−1 h−1. These conditions were maintained for more than 150 days, confirming that an equilibrium had been achieved between biomass growth, endogenous metabolism, and solubilization of inorganic materials.  相似文献   

9.
Wheat straw as substrate for water denitrification   总被引:18,自引:0,他引:18  
Biological denitrification of drinking water was studied in up-flow laboratory reactors packed with wheat straw which served as the sole carbon source as well as the only physical support for the microorganisms. The highest rates of denitrification (0.053 g N removed l−1 d−1) were observed in fresh reactors during their first week of operation and the efficiency of the process declined thereafter. The addition of fresh wheat straw brought about a temporary improvement of the denitrification performance and a regime of one weekly addition prevented the deterioration of a reactor which was operated for 5 months. The rate of denitrification was affected by the water velocity and decreased at velocities above 0.054 m d−1. Colour and soluble organic carbon associated with fresh straw were removed by adsorption on powdered activated carbon.  相似文献   

10.
Studies on marine biological filters: Model filters   总被引:1,自引:0,他引:1  
J.F. Wickins 《Water research》1983,17(12):1769-1780
Model systems of 401. capacity were used to study chemical changes which affected buffering in continuously recycled sea water and which restricted nitrification in percolating biological filters at 28°C.

Sustained hydrogen ion production during the microbial oxidation of ammonia to nitrite caused continuous carbon dioxide formation from carbonate and bicarbonate. The carbon dioxide was steadily lost to the air through vigorous aeration, leaving < 2 mg inorganic carbon 1−1 in the sea water. Oxidation of nitrate to nitrate did not significantly reduce pH nor deplete buffer capacity.

Ammonia oxidation was severely inhibited by the combination of low pH and dissolved inorganic carbon levels, but similar low levels of pH produced when carbon dioxide was bubbled through the water had only a moderate effect. Inhibition could be rapidly overcome or prevented by additions of inorganic carbon, sodium hydroxide or sodium dihydrogen phosphate.

Values recorded for the maximum specific growth rate of Nitrosomonas and Nitrobacter were 0.53 and 0.81 d−1 respectively. The corresponding generation or doubling times were calculated to be 31.4 and 20.5 h.

Some evidence was found for the uptake of phosphate and the formation of hydroxylamine during nitrification.  相似文献   


11.
G. Koch  H. Siegrist 《Water research》1997,31(12):3029-3038
The large wastewater treatment plants in Switzerland have to be extended by enhanced nitrogen removal to comply with the relevant EU directives. Denitrification in tertiary filtration is a cost-effective alternative to extended denitrification in an activated sludge system which needs additional reactor volume. Full-scale experiments in denitrification with methanol in tertiary filtration were performed at the wastewater treatment plant in Zurich-Werdhölzli during a summer and a winter campaign, each lasting 4 months. One of the original 22-filter cells was equipped with a methanol dosage unit for this purpose. Denitrification rates of about 1.0 kg-N m−3 d−1 are attained at temperatures of 12–15°C. The denitrification is reduced significantly after main back-washing. Frequent back-washings (several times per day) lead to methanol breakthroughs due to biofilm loss. The yield coefficient YCOD was 0.4 kg-CODxkg-COD−1me. In spite of the methanol dosage, the quality of the filter effluent is very good during normal operation in the winter campaign. Accumulation of the nitrite intermediate product was observed in summer at temperatures of 20–22°C.  相似文献   

12.
W.A. Pretorius 《Water research》1971,5(12):1141-1146
Anaerobically pretreated sewage was treated by an aerobic bacterial disc unit. Owing to the plug-flow nature of the system, different microfloral populations developed on the different discs. The maximum weight of biomass obtained was 45 g m-2 of the wetted surface. Maximum COD removal was 0·49 g COD g-1 biomass day-1. Practically all nitrogen was converted to nitrate; maximum nitrification rate was 0·138 g NO3–N g-1 biomass day-1.  相似文献   

13.
Degradation of Aroclor 1242 was studied in granular biofilm reactors with limited aeration. An aerobic biphenyl degrader, Rhodococcus sp. M5, was used to supplement a natural bacterial population present in a “bioaugmented” reactor, while the “non-bioaugmented” reactor only contained natural granular sludge. The bioaugmentation, however appeared to have no effect on the reactor performance. Aroclor measurements showed its disappearance in both reactors with only 16–19% of Aroclor recovered from the reactor biomass and effluent. Simultaneously, a chlorine balance indicated that dechlorination occurred at a specific rate of 1.43 mg PCB (g volatile suspended solids)−1 d−1, which was comparable to the observed rate of Aroclor disappearance. Intermediates detected in both reactors were biphenyl, benzoic acid, and mono-hydroxybiphenyls. This suggests that a near-complete mineralization of Aroclor can be achieved in a single-stage anaerobic/aerobic system due to a combination of reductive and oxidative degradation mechanisms.  相似文献   

14.
This work describes investigations into the role that biotic and abiotic mechanisms play in the manganese redox cycle in a freshwater dam over a twelve month period. Enzymatic control of manganese oxidation was taking place with a temperature optimum of approx. 30°C. Manganese oxidation was only significant above about 19°C. The temperature and season play vital roles in determining the extent to which abiotic and microbial mechanisms contribute to manganese oxidation. Results showed that microbial catalysis is overwhelmingly responsible for manganese oxidation in the lower epilimnion from November to May. Significant abiotic catalysis (up to 25%) can occur in late summer/autumn when the water temperature is greatest. Mn(II) oxidation, pseudo-first order rate constants to 1.12 × 1022 M−4 · d−1 were measured while poisoned sample experiments confirmed the role of biological mediation. In winter, biological control could not occur because of the lower temperature of the water column. The measurement of “x” in MnOx showed that higher manganese oxidation states were expected when the manganese oxidation rate was at a maximum and therefore when microbial activity was greatest. Direct microbial reduction of MnOx in the water column was of much less significance. However, indirect reduction may have taken place through the reaction of MnOx with sulfide. The results of this work have important implications for the design and operation of artificial destratification units for the control of manganese speciation.  相似文献   

15.
Effects of nitrobenzene and zinc on acetate utilizing methanogens   总被引:2,自引:0,他引:2  
Determination of anaerobic degradation rates and toxic effects of nitrobenzene (NB) on acetate utilizing methanogens was the first objective of this research. Serum bottles were used for anaerobic toxicity assays with an acetate enrichment culture of methanogens. Ten mg/l of nitrobenzene did not inhibit total gas production in the acetate enrichment methanogenic culture. Twenty and thirty mg/l of nitrobenzene caused reversible inhibition of methanogenesis. Batch kinetic experiments showed that 20 mg/l of nitrobenzene was degraded with a first-order rate constant, k, of 0.37 d−1. Acetate was not degraded during the first 7 days when the measured nitrobenzene concentration was higher than about 1 mg/l. The second objective was to determine the effect of zinc on nitrobenzene degradation in methanogenic systems. Ten mg/l of spiked zinc caused a reduction of gas production in the systems with 10 mg/l of nitrobenzene; 20 mg/l of zinc led to failures of systems with 10 and 20 mg/l of nitrobenzene. With 10 and 20 mg/l of added zinc, the k value for nitrobenzene degradation decreased to 0.18 d−1 and 0.14 d−1, respectively. With 20 mg/l of Zn, acetate was not degraded at all even after nitrobenzene concentration reached 0.1 mg/l, indicating toxicity of Zn to methanogenesis. Abiotic control tests with autoclaved culture showed that adsorption alone could remove 60–70% of spiked nitrobenzene in 36 days. However, the samples extracted from solids in the methanogenic test systems showed that nitrobenzene was below the detection limit of 0.1 mg/l, indicating biodegradation of nitrobenzene in these systems. Traces of benzene were seen as an intermediate in the liquid samples. Headspace analysis showed that nitrobenzene and benzene were below detection limits.  相似文献   

16.
A medium-strength leachate from domestic solid wastes in a landfill (COD 5000 mg l−1, BOD 3000 mg l−1 was treated using aerobic biological processes in continuous-flow, laboratory-scale reactors at low temperatures. Each unit was completely mixed, and mixed liquor was wasted such that solids retention time (SRT) was equal to the hydraulic retention period.At 10 C with addition of phosphate (COD:P less than 100:1) SRT values of 10 days were required to obtained well-clarified effluents, and high removal of BOD (>;98%) and COD (>;92%). Reduction of temperature to 5°C resulted in adverse effects on settling of sludges from units with SRT values of less than 10 days, but in other units good removal of organic materials could still be obtained. These units operated successfully with concentrations of mixed liquor volatile suspended solids (MLVSS) of 1450 mg l−1, equivalent to a ratio of F/M of 0.21 kg BOD kg−1 MLVSS day−1 or less. Removal of ammoniacal nitrogen which took place (influent concentration 80 mg l−1 as N) resulted from incorporation in biomass, and at SRT values of 10 days no nitrification took place at 5 or 10 C. Higher concentrations of ammonia in influent leachates resulted in ammonia in effluents when the ratio of BOD:N was less than about 100:3.6. Increasing the SRT of units to 20 days resulted in erratic conversion to nitrite, but reduced pH-values and possible simultaneous denitrification caused floating sludges and poorly-clarified effluents. Removal of ammonia is identified as a major problem when treating leachates, and further research is recommended.  相似文献   

17.
D.P. Middaugh  A.M. Crane  J.A. Couch   《Water research》1977,11(12):1089-1096
The sensitivity of juvenile spot, Leiostomus xanthurus, to total residual chlorine (TRC) in flowing sea-water was investigated. Incipient LC50 bioassays, histopathology, avoidance tests and the combined effect of thermal stress and TRC were used to assess sensitivity.

Estimated incipient LC50 values were 0.12 mg 1−1 TRC at 10°C and 0.06 mg 1−1 TRC at 15°C. Histological examination of spot used in the incipient LC50 bioassay at 15°C and sacrificed while alive indicated pseudobranch and gill damage occurred in individuals exposed to a measured TRC concentration of 1.57 mg 1−1. Spot exposed to lower concentrations of TRC, 0.02 0.06 mg 1−1 at 15°C and sacrificed alive showed no consistent tissue damage.

Spot demonstrated temperature dependent avoidance responses to TRC. At 10°C, a concentration of 0.18 mg 1−1 was required for significant (X2; P < 0.05) avoidance; at 15 and 20°C, spot showed significant avoidance of TRC concentrations as low as 0.05 mg 1−1.

Simultaneous exposure of spot to thermal stress (5, 10 or 13°C above the acclimation temperature of 15°C) at measured TRC concentrations of 0.05 0.07 and 0.34–0.52 mg 1−1 demonstrated a significant, (Z2) with Yates correction, P < 0.05) increase in sensitivity to TRC with increased temperature and exposure times for some of the groups tested.  相似文献   


18.
K.K. Chin  K.K. Wong 《Water research》1981,15(9):1087-1092
Effluent from the refining of crude palm oil was subjected to physical-chemical and biological treatment. An inclined corrugated parallel plates oil separator spaced at 25 mm was used with hydraulic loading rates of 0.2, 0.5 and 1 m3 m−2-h. 91% oil and grease removal could be achieved at 0.2 m3 m−2-h. Coagulation and flocculation carried out on batch samples after oil and grease separation revealed that with 100 mg l−1 alum addition BOD was reduced from 3500 to 450 mg l−1 and COD from 8600 to 750 mg l−1 after 30 min settling. Higher doses of alum and doses of polyelectrolyte, activated carbon and sodium hypochloride did not yield significant additional reductions in BOD and COD. Batch dissolved air flotation (DAF) removed 90% of the suspended solids with 2.7% solids in the thickened sludge at an A/S ratio of 0.014. This method yielded the similar effluent quality as the inclined corrugated plates oil and grease separator. Field data from a DAF plant compare closely with data achieved in this study. Activated sludge treatment on the effluent from the oil separator yielded a BOD of 46 mg l−1 with a loading rate of 0.3 g BOD (g MLVSS)−1-day. Total dissolved solids (TDS) remained high and removal through coagulation and chemical oxidation brought the COD level down to around 180 mg l−1. Biokinetic coefficients Y, kdK and K3 were found to be 0.85 g VSS (g BOD)−1, 0.016 day−1, 0.12 g BOD (g VSS)−1-day and 510 mg l−1 BOD respectively.  相似文献   

19.
Operational parameters at the Balatonfüred sewage treatment plant and the technology of chemical phosphate removal on a plant-scale have been examined in a 3-week series of experiments. Aluminium sulphate and iron(II) sulphate have been used as precipitating agents. It was found that the addition of 30 mg 1−1 aluminium gave 90 per cent removal of total phosphorus. The addition of 60 mg 1−1 iron(II) gave 89 per cent removal of total phosphorus. The costs of these chemicals are 0·93 Ft m−3 for aluminium and 0·11 Ft m−3 for iron precipitants, resp. Thus the iron is significantly less expensive as a phosphorus precipitant.  相似文献   

20.
To develop a method of forming lake sediment into sludge ceramics with porosity and good biological adhesion for use as a medium for microorganisms in wastewater treatment, a study of the effects of forming conditions was conducted by adjusting the water content of sludge and compounding some additives. By adjusting the water content of the raw material at the kneading/pelletizing step to 40–42% and adding 3% waste glass to the raw materials to make up for the lack of flux, a sludge ceramic with a density in terms of specific gravity of saturated surface dry aggregate of about 1400 kg m−3 was formed. In addition, to develop a small-scale wastewater treatment system capable of removing nitrogen and phosphorus, a sludge ceramic was applied as a medium for biological filtration. The results indicated that the BOD removal nitrification rate were superior to those of conventional ceramic media, reached at 95.3% and 87.4%, respectively. The introduction of iron electrolysis resulted in high treatment performance achieving BOD levels of 10 mg L−1 or less, T-N of 10 mg L−1 or less and T-P of 1 mg L−1 or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号