首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper describes the fluoride removal potential of a novel sorbent, magnesia-amended activated alumina (MAAA) from drinking water. MAAA, prepared by calcining magnesium hydroxide impregnated alumina at 450 °C has shown high fluoride sorption potential than activated alumina from drinking water. Batch sorption studies were performed as a function of contact time, pH, initial fluoride concentration, and adsorbent dose. Studies were also performed to understand the effect of various other co-existing ions present in real ground water samples. X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and a gas adsorption porosimetry analyses were used to characterize the physicochemical properties of MAAA. More than 95% removal of fluoride (10 mg l−1) was achieved within 3 h of contact time at neutral pH. Sorption of fluoride onto MAAA was found to be pH dependant and a decrease in sorption was observed at higher pHs. Among the kinetic models tested, pseudo-second-order model fitted the kinetic data well, suggesting the chemisorption mechanism. Among the various isotherm model tested, Sips model predicted the data well. The maximum sorption capacity of fluoride deduced from Sips equation was 10.12 mg g−1. Most of the co-existing ions studied have negligible effect on fluoride sorption by MAAA. However, higher concentrations of bicarbonate and sulfate have reduced the fluoride sorption capacity.  相似文献   

2.
Of late, the ground water sources of many countries remain fragile due to fluoride attack. The intensity and scale of the human stress effects associated with this issue, prompts global research for sustainable solutions. This paper examines and compares the potential of a newly developed adsorbent alumina cement granules (ALC) in removing fluoride from natural ground water, and synthetic water prepared using conditions and concentrations relevant to natural freshwater environments. The batch sorption profiles appeared similar in natural and synthetic systems. The fluoride removal was concentration dependent in synthetic system as the equilibrium adsorption capacity was found to be 4.75 and 3.91 mg g−1 corresponding to initial concentrations of 20 and 8.65 mg l−1 at optimal conditions. ALC exhibited reduced fluoride adsorption capacity in treating natural water compared to synthetic systems in both batch and column studies. The sorption process is found to be unaffected in the pH range of 3.0–11.5. Though the presence of ions like nitrates, chlorides, sulfates, and bicarbonates did not offer any interference to fluoride sorption, silicates and phosphates at higher concentrations reduced fluoride uptake by ALC. The natural organic matter in ground water appears to play a role in reducing the adsorption capacity of ALC. Thermodynamics of sorption confirms that the process is spontaneous and endothermic in both natural and synthetic systems.  相似文献   

3.
Calcined titanate nanotubes were synthesized with hydrothermal treatment of the commercial TiO2 (Degussa P25) followed by calcination. The morphology and structures of as-prepared samples were investigated by transmission electron microscopy, X-ray diffraction and N2 adsorption/desorption. The samples exhibited a tubular structure and a high surface area of 157.9 m2/g. The adsorption of methylene blue onto calcined titanate nanotubes was studied. The adsorption kinetics was evaluated by the pseudo-first-order, pseudo-second-order and Weber's intraparticle diffusion model. The pseudo-second-order model was the best to describe the adsorption kinetics, and intraparticle diffusion was not the rate-limiting step. The equilibrium adsorption data were analyzed with three isotherm models (Langmuir model, Freundlich model and Temkin model). The best agreement was achieved by the Langmuir isotherm with correlation coefficient of 0.993, corresponding to maximum adsorption capacity of 133.33 mg/g. The adsorption mechanism was primarily attributed to chemical sorption involving the formation of methylene blue-calcined titanate nanotubes nanocomposite, associated with electrostatic attraction in the initial bulk diffusion.  相似文献   

4.
The sorption of boron from aqueous solution onto Caulerpa racemosa var. cylindracea (CRC), collected from Seferihisar/Izmir region in Turkey, was investigated as a function of pH, temperature, initial boron concentration, adsorbent dosage, contact time and ionic strength. Optimum conditions for the sorption of boron were obtained at pH 7.5, 318 K, 8 mg L−1 initial boron concentration, 0.2 g of CRC, 2.5 h contact time and greater ionic strength (10−1 M NaCl). As the temperature was increased the boron removal took place with higher percentages. In experiments conducted at optimum conditions, maximum boron sorption was determined to be about 63%. The experimental data were analyzed by Freundlich, Langmuir and Dubinin–Radusckevich (DR) equations. Freundlich and DR models provide best conformity with the experimental data. In order to describe kinetics of boron sorption onto CRC, first-order Lagergren equation, pseudo-second-order kinetic model and intraparticle diffusion model were used. It was seen that the first order Lagergren equation was better described than the pseudo-second-order kinetic model. Thermodynamic parameters of sorption process were also calculated. It was obtained that sorption process was not spontaneous. The characterization of CRC was carried out by Fourier transform infrared spectroscopy (FTIR) analysis.  相似文献   

5.
《Ceramics International》2016,42(14):15253-15260
Gamma phase of mesoporous alumina (MA) with large surface area was successfully synthesized by a facile hydrothermal method followed by thermal treatment for fluoride removal. The as-synthesized MA nanoparticles with average size of 20 nm–150 nm have ordered wormhole-like mesoporous structure. The pore size is 5 nm with a narrow distribution, and the specific surface area reaches 357 m2 g−1 while the bulk density is 0.45 cm3 g−1. Glucose as a small-molecule template plays an important role on the morphology, surface area and pore diameter of the MA. As an ionic adsorbent for fluoride removal, the maximum adsorption capacity of MA is 8.25 mg g−1, and the remove efficiency reaches 90% in several minutes at pH of 3. The Langmuir equilibrium model is found to be suitable for describing the fluoride sorption on MA and the adsorption behavior follows the pseudo-second-order equation well with a correlation coefficient larger than 0.99. The larger surface area and relatively narrow pore size of MA are believed to be responsible for improving the adsorption efficiency for fluoride in aqueous solution.  相似文献   

6.
Three novel magnetic adsorbents were synthesized through the immobilization of di-, tri-, and tetraamine onto the surface of silica coated magnetite nanoparticles. The adsorbents were characterized by XRD patterns, FTIR spectroscopy, elemental and thermogravimetric analysis, magnetic measurements, SEM/TEM, EDX spectroscopy, and N2 adsorption/desorption isotherms. Their capacity to remove copper ions from aqueous solutions was investigated and discussed comparatively. The equilibrium data were analyzed using Langmuir and Freundlich isotherms. The kinetics was evaluated using the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The best interpretation for the equilibrium data was given by the Langmuir isotherm for the tri- and tetraamine functionalized adsorbents, while for the diamine functionalized adsorbent the Freundlich model seemed to be better. The kinetic data were well fitted to the pseudo-second-order model. The overall rate of adsorption was significantly influenced by external mass transfer and intraparticle diffusion. It was observed that the adsorption capacity at room temperature decreased as the length of polyamine chain immobilized on the adsorbent surface increased, the maximum adsorption capacities being 52.3 mg g?1 for 1,3-diaminopropan functionalized adsorbent, 44.2 mg g?1 for diethylenetriamine functionalized adsorbent, and 39.2 mg g?1 for triethylenetetramine functionalized adsorbent. The sorption process proved to be highly dependent of pH. The results of the present work recommend these materials as potential candidates for copper removal from aqueous solutions.  相似文献   

7.
《Dyes and Pigments》2008,76(3):701-713
The use of low-cost and ecofriendly adsorbents was investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Sepiolite was used as an adsorbent for the removal of methyl violet (MV) and methylene blue (MB) from aqueous solutions. The rate of adsorption was investigated under various parameters such as contact time, stirring speed, ionic strength, pH and temperature for the removal of these dyes. Kinetic study showed that the adsorption of dyes on sepiolite was a gradual process. Quasi-equilibrium reached within 3 h. Adsorption rate increased with the increase in ionic strength, pH and temperature. Pseudo-first-order, the Elvoich equation, pseudo-second-order, mass transfer and intra-particle diffusion models were used to fit the experimental data. The sorption kinetics of MV and MB onto sepiolite was described by the pseudo-second-order kinetic equation. Intra-particle diffusion process was identified as the main mechanism controlling the rate of the dye sorption. The diffusion coefficient, D, was found to increase when the ionic strength, pH and temperature were raised. Thermodynamic activation parameters such as ΔG1, ΔS1 and ΔH1 were also calculated.  相似文献   

8.
Montmorillonite KSF and K10 were used as precursor materials for synthesis of aluminum pillared K10 and KSF (Al-K10 and Al-KSF) which characterized by TGA, XRD, SEM and FT-IR spectroscopic analysis. The sorption of trimethoprim (TMP) which is commonly employed as an antibiotic onto Al-K10 and Al-KSF was also investigated as a function of adsorbent dosage, solution pH, contact time and temperature. The adsorption kinetics was interpreted using pseudo-first-order, pseudo-second-order kinetic models and intraparticle diffusion model. The pseudo-second-order model provided the best correlation. Adsorption isotherm parameters were obtained from Freundlich, Langmuir and Dubinin–Radushkevich (DR) isotherm models. Adsorption of TMP onto Al-K10 and Al-KSF was physical in nature and ion-exchange mechanism for DR equation, respectively. Al-K10 exhibits higher removal capacity at lower adsorbent dosages in comparison with Al-KSF. The removal capacity was increased by increasing pH. ΔH0, ΔS0 and ΔG0 showed that adsorption of trimethoprim was endothermic, increasing randomness and not spontaneous in nature.  相似文献   

9.
Lili Lian  Aixia Wang 《Desalination》2009,249(2):797-163
CaCl2 modified bentonite (BCa2+), a clean and cost-effective adsorbent with a basal spacing of 15.43 Å, was prepared for the removal of Congo red dye from water. It was effective for the removal of Congo red with a high adsorption capacity, and the adsorption was favored over a broad pH range (5-10). The pseudo-second-order kinetic model provided the best correlation of the experimental data. Adsorption isotherms indicated that sorption took place at specific homogeneous sites within the adsorbent. Furthermore, BCa2+ showed higher sorption capacity compared with other common materials used as adsorbents for Congo red dye. The results showed that BCa2+ could be employed as a low-cost material for the removal of Congo red from aqueous solutions.  相似文献   

10.
A new polyacrylamide-bentonite composite with amine functionality (Am-PAA-B) was prepared by direct polymerization in the presence of N,N'-methylenebisacrylamide as a crosslinking agent and potassium peroxydisulphate as an initiator followed by reaction with ethylenediammine. The Am-PAA-B was modified by immobilizing humic acid and tested as an adsorbent to remove basic dyes (Malachite Green, Methylene Blue and Crystal Violet) from aqueous solutions. XRD, conductometric and potentiometric titrations were used to characterize the adsorbent. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was observed at the pH range 5.0 to 8.0. The adsorption kinetic data were interpreted by pseudo-second-order rate equation and the film diffusion was the rate-limiting step. The equilibrium data were fitted well with the Freundlich isotherm model. Desorption of dyes was achieved by treatment with 0.1 M HNO3 and four adsorption desorption cycles were performed without significant decrease in adsorption capacity.  相似文献   

11.
Hülya Koyuncu   《Applied Clay Science》2008,38(3-4):279-287
In this study, the adsorption kinetics of 3-hydroxybenzaldehyde dissolved in ethanol on native and activated (acid/heat activation) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The cation exchange capacities (CEC) of the native and activated bentonites were found as 65 and 97 meq/100 g, respectively. The adsorption efficiency of 3-hydroxybenzaldehyde onto the native and activated bentonites was increased with increasing initial bentonite amount and temperature. Also, it was found that the adsorption efficiency with activated bentonite was greater than native bentonite. The kinetics of adsorption of 3-hydroxybenzaldehyde was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model and also followed the intra-particle diffusion model up to 20 min. The rate constants of pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics and the amount of the solute sorbed at equilibrium were determined. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated using the pseudo-second-order rate constant, and it was found to be 53.36 kJ mol− 1 and 14.03 kJ mol− 1 for native and activated bentonites, respectively.  相似文献   

12.
《分离科学与技术》2012,47(2):316-334
Abstract

The present study was undertaken to evaluate the adsorption potential of Citrus limonum (lemon) peel as an adsorbent for the removal of two anionic dyes, Methyl orange (MO) and Congo red (CR) from aqueous solutions. The adsorption was studied as a function of contact time, initial concentration, and temperature by batch method. The adsorption capacities of lemon peel adsorbent for dyes were found 50.3 and 34.5 mg/g for MO and CR, respectively. The equilibrium adsorption data was well described by the Langmuir model. Three simplified kinetic models viz. pseudo-first-order, pseudo-second-order, and Weber and Morris intraparticle diffusion model were tested to describe the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities, and related correlation coefficients for each kinetic model were determined. It was found that the present system of dyes adsorption on lemon peel adsorbent could be described more favorably by the pseudo-first-order kinetic model. The results of the present study reveal that lemon peel adsorbent can be fruitfully utilized as an inexpensive adsorbent for dyes removal from effluents.  相似文献   

13.
The proposed research describes the synthesis and characterization of platinum nanoparticles loaded on activated carbon (Pt-NP-AC) and its efficient application as novel adsorbent for efficient removal of reactive orange 12 (RO-12). The influences of effective parameters following the optimization of variables on removal percentages, their value was set as 0.015 g Pt-NP-AC, pH 1, contact time of 13 min. At optimum values of all variables at 25 and 50 mgL−1 of RO-12 enthalpy (ΔH0) and entropy (ΔS0) changes was found to be 59.89 and 225.076, respectively, which negative value of ΔG0 shows a spontaneous nature, and the positive values of ΔH0 and ΔS0 indicate the endothermic nature and adsorption organized of dye molecule on the adsorbent surface. Experimental data was fitted to different kinetic models including first-order, pseudo-second-order, Elovich and intra-particle diffusion models, and it was seen that the adsorption process follows pseudo-second-order model in consideration to intra-particle diffusion mechanism. At optimum values of all variables, the adsorption process follows the second-order kinetic and Langmuir isotherm model with adsorption capacity 285.143 mg g−1 at room temperature.  相似文献   

14.
Lignocellulosic coconut wastes such as pith and fiber, which are abundantly available and cheap, have the potential of being used as low-cost biosorbents for heavy metal ion removal. In this study, pristine (CF-Pristine) and NaOH-treated (CF-NaOH) coconut fibers were used as a biosorbent for Hg(II) removal from an aqueous solution. The coconut fiber biosorbent (CFB) was characterized by scanning electron microscopy (SEM) and Fourier transform-infrared (FTIR) spectroscopy. The Hg(II) sorption capacities obtained for CF-Pristine and CF-NaOH were 144.4 and 135.0 mg/g, respectively. Both the equilibrium and kinetic data of Hg(II) sorption onto CFB followed the Langmuir isotherm model and a pseudo-second-order kinetic model, respectively. A further analysis of the kinetic data suggested that the Hg(II) sorption process was governed by both intraparticle and external mass transfer processes, in which film diffusion was the rate-limiting step. These results demonstrated that both pristine- and alkali-treated coconut wastes could be potential low-cost biosorbent alternatives for the removal of Hg(II) from aqueous solutions, such as water containing Hg(II) produced in the oil and gas industry.  相似文献   

15.
《分离科学与技术》2012,47(9):1462-1471
The potential of waste seashells powder, as a new adsorbent for Brilliant Red HE-3B reactive dye removal from aqueous solutions, was examined by the batch technique. The Freundlich, Langmuir, and Dubinin-Radushkevich adsorption models were applied to describe the equilibrium sorption data and to determine the corresponding isotherm constants. The values of the thermodynamic parameters, ΔG, ΔH, and ΔS, indicate that the sorption of reactive dye is a spontaneous and endothermic process. The kinetic data evaluated by pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models suggested that the sorption of reactive dye onto seashell is a complex process and both surface sorption and intraparticle diffusion contributes to the rate limiting step.  相似文献   

16.
Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther-modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemical y activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemical y activated CTNSC is spon-taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models. A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride sorption.  相似文献   

17.
Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g−1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42 groups.  相似文献   

18.
MgO mesoporous nanofibers were obtained by a template-free electrospinning method. The unique bumpy-structure was obtained on the surface of nanofibers that could enhance the surface area and provide more active sites for adsorption. The formation mechanism of the bumpy-structure has been investigated. The as-prepared MgO nanofibers with a high surface area of 194.17?m2 g?1 exhibited excellent adsorption capacities for fluoride of 237.49?mg?g?1. Furthermore, the MgO nanofibers showed selective adsorption for different organic dyes and have superior adsorption capacity for Congo red (4802.27?mg?g?1). The adsorption processes for both fluoride and Congo red were systematically investigated, which were found to follow the pseudo-second-order kinetic model. By comparison with the reported fabrication routes and adsorption capacities of mesoporous MgO, the synthesis process is simple, controllable and template-free, and the superior adsorption performance provided a potential adsorbent for the removal of fluoride and Congo red in wastewater treatment. The high surface area of the MgO mesoporous nanofibers might also promote its application in basic catalysis and other fields.  相似文献   

19.
Mn2O3 microspheres are prepared and used as adsorbent for removal of heavy metal ions. Morphology and structure of Mn2O3 microspheres are analyzed by SEM, TEM, XRD, XPS and N2 sorption technique. Effects of adsorbent concentration, ion concentration and agitation time on adsorption behavior are investigated. Adsorption isotherm and kinetics are also studied. The results show Mn2O3 microspheres have well-developed porous and hollow structure, demonstrating good potential on removal of heavy metal ions. Adsorption data fit better with Freundlich isotherms than Langmuir isotherms. Kinetic studies indicate adsorption behavior is described by pseudo-second-order kinetic model, and intra-particle diffusion plays a significant role.  相似文献   

20.
The adsorption of methylene blue (MB) on graphene-based adsorbents was tested through the batch experimental method. Two types of graphene-based adsorbents as graphene oxide (GO) and reduced graphene oxide (RGO) were compared to investigate the best adsorbent for MB removal. So that optimizing the MB removal for the selected type of graphene-based adsorbent, the diverse experimental factors, as pH (2–10), contact time (0–1440 min), adsorbent dosage (0.5–2 g/L), and initial MB concentration (25–400 mg/L) were analyzed. The conclusions indicated that the MB removal rised with an increase in the initial concentration of the MB and so rises in the amount of adsorbent used and initial pH. Maximum dye removal was calculated as 99.11% at optimal conditions after 240 min. Adsorption data were compiled by the Langmuir isotherm (R2: 0.999) and pseudo-second-order kinetic models (R2: 0.999). The Langmuir isotherm model accepted that the homogeneous surface of the GO adsorbent covering with a single layer. And the adsorption energy was calculated as 9.38 kJ mol−1 according to the D-R model indicating the chemical adsorption occurred. The results show that GO could be utilized for the treatment of dye-contaminated aqueous solutions effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号