首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of extracellular Ca2+ on cytotoxicity induced by cardiotoxin (CTX), isolated from Chinese cobra venom, were investigated in cultured rabbit aortic endothelial cells (RAECs). In Hank's buffered saline solution (HBSS) containing 1.2 mM Ca2+, CTX (1-30 microM) caused cell necrosis and cell death in a concentration-dependent manner, as determined by trypan blue exclusion test performed after a 20-min CTX treatment. The concentration of CTX that caused 50% cell death was about 6.5 microM. CTX (10 microM)-induced RAEC damage was also evident but less prominent in Ca2+-free medium and almost completely prevented in medium containing 7-10 mM Ca2+. Therefore, Ca2+ appears to provoke CTX-induced injury at physiological concentrations, but protects against it at high concentrations. The protection of RAECs from CTX-induced injury could also be achieved by high concentrations of Ni2+ and Mg2+. Using the fura-2 fluorescence technique to measure the cytosolic free Ca2+ concentration ([Ca2+]i) of single RAEC, it was shown that in 1.2 mM Ca2+-containing HBSS, treatment of RAECs with 10 microM CTX for 7-35 min resulted in a tremendous and irreversible [Ca2+]i elevation, suggestive of cell membrane damage and extracellular Ca2+ entry. Ni2+ could also enter the cytosol of these damaged RAECs. However, there was no [Ca2+]i elevation or Ni2+ entry in RAECs that were preincubated in HBSS containing 7 mM Ca2+ or Ni2+ before CTX exposure. In RAECs protected with 7 mM Ca2+, the intracellular Ca2+ signals triggered by 100 microM extracellular ATP or 10 microM bradykinin in CTX-treated groups were similar to those in the untreated control groups. Taken together, the results indicate that high extracellular Ca2+ concentrations protected RAECs from CTX-induced injury, and preserved the ability of CTX-treated RAECs to generate Ca2+ signals in response to physiological stimuli.  相似文献   

2.
3.
Ethanol inhibition of NMDA receptor stimulation by the high-affinity selective agonist D, L-(tetrazol-5-yl)glycine (T5G) was studied using acutely dissociated neonatal whole-brain neurons loaded with the fluorescent indicator fura-2. T5G induced a concentration-dependent increase in intracellular calcium with a maximal increase above basal of 70nM at 16 microM T5G (EC50 of 0.66 +/- 0.18 microM). T5G agonist specificity was verified using the NMDA antagonists MK-801 (40 nM), APV (100 microM), and Mg2+ (1 mM). The T5G stimulation of calcium entry was both blocked and reversed by these antagonists. Ethanol significantly inhibited the T5G-mediated increase in intracellular calcium only at concentrations > or = 100 mM. In addition, the effect of increasing concentrations of ethanol in the presence of the glycine-site antagonist 5, 7-dichlorokynurenic acid (DCKA, 0.37 microM) on T5G-stimulated calcium entry was examined. A significant inhibition of the T5G-stimulated response in the presence of DCKA was observed at ethanol concentrations as low as 20 mM. These results support previous findings that T5G is a potent agonist of the NMDA receptor and indicate that stimulation of calcium entry by this agonist is less sensitive to ethanol inhibition than stimulation by NMDA.  相似文献   

4.
Nicotine at very low doses (5-30 nM) induced large amounts of luteinizing hormone-releasing hormone (LHRH) release, which was monitored as slow membrane depolarizations in the ganglionic neurons of bullfrog sympathetic ganglia. A nicotinic antagonist, d-tubocurarine chloride, completely and reversibly blocked the nicotine-induced LHRH release, but it did not block the nerve-firing-evoked LHRH release. Thus, nicotine activated nicotinic acetylcholine receptors and produced LHRH release via a mechanism that is different from the mechanism for evoked release. Moreover, this release was not caused by Ca2+ influx through either the nicotinic receptors or the voltage-gated Ca2+ channels because the release was increased moderately when the extracellular solution was changed into a Ca2+-free solution that also contained Mg2+ (4 mM) and Cd2+ (200 microM). The release did not depend on Ca2+ release from the intraterminal Ca2+ stores either because fura-2 fluorimetry showed extremely low Ca2+ elevation (approximately 30 nM) in response to nicotine (30 nM). Moreover, nicotine evoked LHRH release when [Ca2+] elevation in the terminals was prevented by loading the terminals with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and fura-2. Instead, the nicotine-induced release required extracellular Na+ because substitution of extracellular NaCl with N-methyl-D-glucamine chloride completely blocked the release. The Na+-dependent mechanism was not via Na+ influx through the voltage-gated Na+ channels because the release was not affected by tetrodotoxin (1-50 microM) plus Cd2+ (200 microM). Thus, nicotine at very low concentrations induced LHRH release via a Na+-dependent, Ca2+-independent mechanism.  相似文献   

5.
The purpose of this study was to test whether the elevated intracellular Ca++ level ([Ca++]i) resulting from store-operated Ca++ entry was associated with vascular smooth muscle contraction. Cyclopiazonic acid (CPA), a selective inhibitor of sarcoplasmic reticulum Ca(++)-ATPase, concentration-dependently (1-10 microM) elevated [Ca++]i in rat aorta, as indicated by an increase in the fura-2 340/380 ratio. Simultaneous measurement of contraction demonstrated that 1 and 10 microM CPA induced insignificant and variable amounts of contraction, respectively. Verapamil (10 microM) had relatively little effect on the 1 and 10 microM CPA-elevated [Ca++]i. In contrast, Ni++ (0.1 mM), in the presence of verapamil, abolished the 1 microM CPA-elevated [Ca++]i. Ni++ (0.1 mM) also partially decreased the 10 microM CPA-elevated [Ca++]i and, furthermore, abolished the associated contraction. A higher Ni++ concentration (1 mM) abolished the 10 microM CPA-elevated [Ca++]i that remained after verapamil and 0.1 mM Ni++. Phorbol dibutyrate (10 nM), a protein kinase C activator, potentiated contractions to 1 and 10 microM CPA in the presence of verapamil. Ni++ (0.1 mM) abolished the enhanced contractions, and decreased the elevated [Ca++]i. These results suggest that 1) elevated [Ca++]i due to store-operated Ca++ entry is dissociated from contraction; 2) the elevated [Ca++]i is restricted to at least two noncontractile compartments that can be differentiated by their relative sensitivities to blockade by low (0.1 mM) and higher (1 mM) Ni++ concentrations, and 3) [Ca++]i elevation within the compartment sensitive to blockade by 0.1 mM Ni++ can be coupled to contraction via protein kinase C activation.  相似文献   

6.
To gain direct access to the secretory machinery and study the regulation, mechanisms, and effectors of Ca2+-dependent neutrophil secretion, we developed an efficient and reproducible method of plasma membrane permeabilization using streptolysin O. We confirmed previous studies that permeabilized neutrophils secrete in response to calcium alone, but we also found that the Ca2+ dose-response is biphasic. Secretion is detectable at <1.0 microM Ca2+ and reaches a plateau between 1.0 and 60 to 80 microM. When stimulated with >80 microM Ca2+, secretion is two- to threefold greater than at lower [Ca2+], suggesting that two distinct mechanisms of Ca2+-dependent secretion that differ in their affinity for Ca2+ exist in neutrophils. Although permeabilization allows 100% leak of lactate dehydrogenase, maximum secretion from permeabilized cells is 80% that of f-met-leu-phe-stimulated intact cells, indicating that the essential components of the Ca2+-dependent secretory apparatus are predominantly, if not entirely, membrane bound. Permeabilization causes leakage of 100% of annexins V and VI, but 41% of annexin I and 12% of annexin III are retained. Immunofluorescence microscopy revealed that retained annexins I and III are associated with granule membranes. Addition of soluble annexins I and III to permeabilized cells increased Ca2+-induced secretion up to 15% and 90%, respectively, implying that both annexins participate in this secretory pathway. While annexin V is not required for secretion, it inhibits the low Ca2+-affinity mechanism of secretion.  相似文献   

7.
Some viruses induce changes in membrane permeability during infection. We have shown previously that the porcine strain of rotavirus, OSU, induced an increase in the permeability to Na+, K+, and Ca2+ during replication in MA104 cells. In this work, we have characterized the divalent cation entry pathway by measuring intracellular Ca2+ in fura-2-loaded MA104 and HT29 cells in suspension. The permeability to Ca2+ and other cations was evaluated by the change of the intracellular concentration following an extracellular cation pulse. Rotavirus infection induced an increase in permeability to Ca2+, Ba2+, Sr2+, Mn2+, and Co2+. The rate of cation entry decreased over time as the intracellular concentration increased during the first 20 s. This indicates that regulatory mechanisms, including channel inactivation, are triggered. La3+ did not enter the cell and blocked the entry of the divalent cations in a dose-dependent manner. Metoxyverapamil (D600), a blocker of L-type voltage-gated channels, partially inhibited the entry of Ca2+ in virus-infected MA104 and HT29 cells. The results suggest that rotavirus infection of cultured cells activates a cation channel rather than nonspecific permeation through the plasma membrane. This activation involves the synthesis of viral proteins through mechanisms yet unknown. The increase in intracellular Ca2+ induced by the activation of this channel may be related to the increase in cytoplasmic and endoplasmic reticulum Ca2+ pools required for virus maturation and cell death.  相似文献   

8.
In goldfish, gonadotropin (GTH-II) responses to the two endogenous GnRHs, salmon-GnRH and chicken-GnRH-II, are mediated by activation of protein kinase C (PKC) and voltage-sensitive Ca2+ channels. In this study, we investigated the role of extracellular Na+, voltage-dependent Na+ channels, and the plasma membrane Na+/H+ exchanger in mediating GnRH-stimulated GTH-II release from dispersed goldfish pituitary cells. Perifusion with Na+-depleted medium reduced the GTH-II response to both GnRHs and the response to the protein kinase C activator, phorbol 12-myristate 13-acetate. Conversely, increasing Na+ influx with veratridine (100 microM) stimulated GTH-II release in the presence and in the absence of extracellular Ca2+. However, the voltage-sensitive Na+ channel blocker, tetrodotoxin (1 microM), did not affect GnRH- stimulated GTH-II release, and the GnRHs did not affect voltage-sensitive Na+ currents. In contrast, the Na+/H+ antiport inhibitors, amiloride or its analog, DMA, reduced GTH-II responses to the GnRHs and phorbol 12-myristate 13-acetate. The Na+/H+ antiport inhibitors did not affect voltage-sensitive Ca2+ or Na+ currents or the GTH-II release response to the Ca2+ ionophore, ionomycin. These findings indicate that extracellular Na+ and the Na+/H+ exchanger are involved in the mediation of GnRH-stimulated GTH-II release. In addition, Na+ entry may modulate GTH-II release independent of extracellular Ca2+.  相似文献   

9.
1. The aim of the present study was to identify the sources of Ca2+ contributing to acetylcholine (ACh)-induced release of endothelium-derived hyperpolarizing factor (EDHF) from endothelial cells of rat mesenteric artery and to assess the pathway involved. The changes in membrane potentials of smooth muscles by ACh measured with the microelectrode technique were evaluated as a marker for EDHF release. 2. ACh elicited membrane hyperpolarization of smooth muscle cells in an endothelium-dependent manner. The hyperpolarizing response was not affected by treatment with 10 microM indomethacin, 300 microM NG-nitro-L-arginine or 10 microM oxyhaemoglobin, thereby indicating that the hyperpolarization is not mediated by prostanoids or nitric oxide but is presumably by EDHF. 3. In the presence of extracellular Ca2+, 1 microM ACh generated a hyperpolarization composed of the transient and sustained components. By contrast, in Ca(2+)-free medium, ACh produced only transient hyperpolarization. 4. Pretreatment with 100 nM thapsigargin and 3 microM cyclopiazonic acid, endoplasmic reticulum Ca(2+)-ATPase inhibitors, completely abolished ACh-induced hyperpolarization. Pretreatment with 20 mM caffeine also markedly attenuated ACh-induced hyperpolarization. However, the overall pattern and peak amplitude of hyperpolarization were unaffected by pretreatment with 1 microM ryanodine. 5. In the presence of 5 mM Ni2+ or 3 mM Mn2+, the hyperpolarizing response to ACh was transient, and the sustained component of hyperpolarization was not observed. On the other hand, 1 microM nifedipine had no effect on ACh-induced hyperpolarization. 6. ACh-induced hyperpolarization was nearly completely eliminated by 500 nM U-73122 or 200 microM 2-nitro-4-carboxyphenyl-N, N-diphenylcarbamate, inhibitors of phospholipase C, but was unchanged by 500 nM U-73343, an inactive form of U-73122. Pretreatment with 20 nM staurosporine, an inhibitor of protein kinase C, did not modify ACh-induced hyperpolarization. 7. These results indicate that the ACh-induced release of EDHF from endothelial cells of rat mesenteric artery is possibly initiated by Ca2+ release from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool as a consequence of stimulation of phospholipid hydrolysis due to phospholipase C activation, and maintained by Ca2+ influx via a Ni(2+)- and Mn(2+)-sensitive pathway distinct from L-type Ca2+ channels. The Ca(2+)-influx mechanism seems to be activated following IP3-induced depletion of the pool.  相似文献   

10.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

11.
Fura-2 fluorescence was used to investigate the effects of H2O2 on [Ca2+]i in the insulin-secreting cell line CRI-G1. H2O2 (1-10 mM) caused a biphasic increase in free [Ca2+]i, an initial rise observed within 3 min and a second, much larger rise following a 30-min exposure. Extracellular calcium removal blocked the late, but not the initial, rise in [Ca2+]i. Thapsigargin did not affect either response to H2O2, but activated capacitive calcium entry, an action abolished by 10 microM La3+. Simultaneous recordings of membrane potential and [Ca2+]i demonstrated the same biphasic [Ca2+]i response to H2O2 and showed that the late increase in [Ca2+]i coincided temporally with cell membrane potential collapse. Buffering Ca2+i to low nanomolar levels prevented both phases of increased [Ca2+]i and the H2O2-induced depolarization. The H2O2-induced late rise in [Ca2+]i was prevented by extracellular application of 100 microM La3+. La3+ (100 microM) inhibited the H2O2-induced cation current and NAD-activated cation (NSNAD) channel activity in these cells. H2O2 increased the NAD/NADH ratio in intact CRI-G1 cells, consistent with increased cellular [NAD]. These data suggest that H2O2 increases [NAD], which, coupled with increased [Ca2+]i, activates NSNAD channels, causing unregulated Ca2+ entry and consequent cell death.  相似文献   

12.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

13.
Astrocytes in primary culture from rat cerebral cortex were probed concerning the expression of delta-opioid receptors and their coupling to changes in intracellular free calcium concentrations ([Ca2+]i). Fluo-3 or fura-2 based microspectrofluorometry was used for [Ca2+]i measurements on single astrocytes in a mixed astroglial-neuronal culture. Application of the selective delta-opioid receptor agonist, [D-Pen2, D-Pen5]-enkephalin (DPDPE), at concentrations ranging from 10 nM to 100 microM, induced concentration-dependent increases in [Ca2+]i (EC50 = 114 nM). The responses could be divided into two phases, with an initial spike in [Ca2+]i followed by either oscillations or a sustained elevation of [Ca2+]i. These effects were blocked by the selective delta-opioid receptor antagonist ICI 174864 (10 microM). The expression of delta-opioid receptors on astroglial cells was further verified immunohistochemically, using specific antibodies, and by Western blot analyses. Pre-treatment of the cells with pertussis toxin (100 ng/ml, 24 h) blocked the effects of delta-opioid receptor activation, consistent with a Gi- or Go-mediated response. The sustained elevation of [Ca2+]i was not observed in low extracellular Ca2+ and was partly blocked by nifedipine (1 microM), indicating the involvement of L-type Ca2+ channels. Stimulating neurons with DPDPE resulted in a decrease in [Ca2+]i, which may be consistent with the closure of the plasma membrane Ca2+ channels on these cells. The current results suggest a role for astrocytes in the response of the brain to delta-opioid peptides and that these opioid effects in part involve altered astrocytic intracellular Ca2+ homeostasis.  相似文献   

14.
1. The effects of diltiazem on various functional parameters were studied in bovine cultured adrenal chromaffin cells stimulated with the nicotinic receptor agonist dimethylphenylpiperazinium (DMPP) or with depolarizing Krebs-HEPES solutions containing high K+ concentrations. 2. The release of [3H]-noradrenaline induced by DMPP (100 microM for 5 min) was gradually and fully inhibited by increasing concentrations of diltiazem (IC50 = 1.3 microM). In contrast, the highest concentration of diltiazem used (10 microM) inhibited the response to high K+ (59 mM for 5 min) by only 25%. 3. 45Ca2+ uptake into cells stimulated with DMPP (100 microM for 1 min) was also blocked by diltiazem in a concentration-dependent manner (IC50 = 0.4 microM). Again, diltiazem blocked the K(+)-evoked 45Ca2+ uptake (70 mM K+ for 1 min) only by 20%. In contrast, the N-P-Q-type Ca2+ channel blocker omega-conotoxin MVIIC depressed the K+ signal by 70%. In the presence of this toxin, diltiazem exhibited an additional small inhibitory effect, indicating that the compound was acting on L-type Ca2+ channels. 4. Whole-cell Ba2+ currents through Ca2+ channels in voltage-clamped chromaffin cells were inhibited by 3-10 microM diltiazem by 20-25%. The inhibition was readily reversed upon washout of the drug. 5. The whole-cell currents elicited by 100 microM DMPP (IDMPP) were inhibited in a concentration-dependent and reversible manner by diltiazem. Maximal effects were found at 10 microM, which reduced the peak IDMPP by 70%. The area of each curve represented by total current (QDMPP) was reduced more than the peak current. At 10 microM, the inhibition amounted to 80%; the IC50 for QDMPP inhibition was 0.73 microM, a figure close to the IC50 for 45Ca2+ uptake (0.4 microM) and [3H]-noradrenaline release (1.3 microM). The blocking effects of diltiazem developed very quickly and did not exhibit use-dependence; thus the drug blocked the channel in its closed state. The blocking effects of 1 microM diltiazem on IDMPP were similar at different holding potentials (inhibition by around 30% at -100, -80 or -50 mV). Diltiazem did not affect the current flow through voltage-dependent Na+ channels. 6. These data are compatible with the idea that diltiazem has little effect on Ca2+ entry through voltage-dependent Ca2+ channels in bovine chromaffin cells. Neither, does diltiazem affect INa. Rather, diltiazem acts directly on the neuronal nicotinic receptor ion channel and blocks ion fluxes, cell depolarization and the subsequent Ca2+ entry and catecholamine release. This novel effect of diltiazem might have clinical relevance since it might reduce the sympathoadrenal drive to the heart and blood vessels, thus contributing to the well established antihypertensive and cardioprotective effects of the drug.  相似文献   

15.
New advances in sex preselection   总被引:1,自引:0,他引:1  
The effects of peroxynitrite (ONOO-) on cultured cardiac myocytes were examined by simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and contractile function. On exposure to 0.2 mM ONOO-, [Ca2+]i increased to beyond the systolic level within 5 min with a concomitant decrease in spontaneous contraction of myocytes followed by complete arrest. Addition of a L-type Ca2+ channel blocker or removal of extracellular Ca2+ prevented the ONOO(-)-induced increase in [Ca2+]i, indicating that the increase in [Ca2+]i was caused by the enhanced influx of Ca2+ through the plasma membrane and not by the enhanced release from sarcoplasmic reticulum (SR). Plasma membrane fluidity and concentration of the thiobarbiturate acid-reactive substance (TBARS) in the cells remained unchanged by the ONOO- treatment. The complete cessation of contraction of myocytes persisted even under the massive increase in [Ca2+]i, which was induced by an additional saponin (5 microM) treatment. In conclusion, ONOO- increases [Ca2+]i in myocytes through disturbance of Ca2+ transport systems in the plasma membrane and impairs contractile protein.  相似文献   

16.
Renal ischemia results in adenosine triphosphate (ATP) depletion, particularly in cells of the proximal tubule (PT), which rely heavily on oxidative phosphorylation for energy supply. Lack of ATP leads to a disturbance in intracellular homeostasis of Na+, K+ and Cl-. Also, cytosolic Ca2+ levels in renal PTs may increase during hypoxia [1], presumably by a combination of impaired extrusion and enhanced influx [2]. However, Ca2+ influx was previously measured using radiolabeled Ca2+ and at varying partial oxygen tension [2]. We have now used to Mn2(+)-induced quenching of fura-2 fluorescence to study Ca2+ influx in individual rat PTs during normoxic and hypoxic superfusion. Normoxic Ca2+ influx was indeed reflected by the Mn2+ quenching of fura-2 fluorescence and this influx could be inhibited by the calcium entry blocker methoxyverapamil (D600; inhibition 50 +/- 2% and 35 +/- 3% for 10 and 100 mumol, respectively). La3+ completely blocked normoxic Ca2+ influx. Hypoxic superfusion or rat PTs did not induce an increase in Ca2+ influx, but reduced this influx to 79 +/- 3% of the normoxic control. We hypothesize that reducing Ca2+ influx during hypoxia provides the cell with a means to prevent cellular Ca2+ overload during ATP-depletion, where Ca2+ extrusion is limited.  相似文献   

17.
Intracellular Ca2+ ([Ca2+]i) and membrane properties were measured in fura-2 dialysed dorsal vagal neurons (DVN) spontaneously active at a frequency of 0.5-5 Hz. [Ca2+]i increased by about 30 nm upon rising spike frequency by more than 200% due to 20-50 pA current pulses or 10 micrometer serotonin. It fell by 30 nm upon block of spiking by current-injection, tetrodotoxin or Ni2+ and also during hyperpolarization due to gamma-aminobutyric acid or opening of adenosine triphosphate (ATP) -sensitive K+ (KATP) channels with diazoxide. KATP channel-mediated hyperpolarizations during anoxia or cyanide produced an initial [Ca2+]i decrease which reversed into a secondary Ca2+ rise by less than 100 nm. Similar moderate rises of [Ca2+]i were observed during block of aerobic metabolism under voltage-clamp as well as in intact cells, loaded with fura-2 AM. The magnitude of the metabolism-related [Ca2+]i transients did not correlate with the amplitude of the KATP channel-mediated outward current. [Ca2+]i did not change during diazoxide-induced or spontaneous activation of KATP outward current observed in 10% of cells after establishing whole-cell recording. Increasing [Ca2+]i with cyclopiazonic acid did not activate KATP channels. [Ca2+]i was not affected upon block of outward current with sulphonylureas, but these KATP channel blockers were effective to reverse inhibition of spike discharge and, thus, the initial [Ca2+]i fall upon spontaneous or diazoxide-, anoxia- and cyanide-induced KATP channel activation. A sulphonylurea-sensitive hyperpolarization and [Ca2+]i fall was also revealed in the early phase of iodoacetate-induced metabolic arrest, whereas after about 20 min, occurrence of a progressive depolarization led to an irreversible rise of [Ca2+]i to more than 1 micrometer. The results indicate that KATP channel activity in DVN is not affected by physiological changes of intracellular Ca2+ and the lack of a major perturbance of Ca2+ homeostasis contributes to their high tolerance to anoxia.  相似文献   

18.
1. The effects of nifedipine on both levcromakalim-induced membrane currents and unitary currents in pig proximal urethra were investigated by use of patch-clamp techniques (conventional whole-cell configuration and cell-attached patches). 2. Nifedipine had a voltage-dependent inhibitory effect on voltage-dependent Ba2+ currents at - 50 mV (Ki=30.6 nM). 3. In current-clamp mode, subsequent application of higher concentrations of nifedipine (> or =30 microM) caused a significant depolarization even after the membrane potential had been hyperpolarized to approximately -82 mV by application of 100 microM levcromakalim. 4. The 100 microM levcromakalim-induced inward current (symmetrical 140 mM K+ conditions, -50 mV) was inhibited by additional application of three different types of Ca antagonists (nifedipine, verapamil and diltiazem, all at 100 microM). In contrast, Bay K 8644 (1 microM) possessed no activating effect on the amplitude of this glibenclamide-sensitive current. 5. When 100 microM nifedipine was included in the pipette solution during conventional whole-cell recording at -50 mV, application of levcromakalim (100 microM) caused a significant inward membrane current which was suppressed by 5 microM glibenclamide. On the other hand, inclusion of 5 microM glibenclamide in the pipette solution prevented levcromakalim from inducing an inward membrane current. 6. The levcromakalim-induced K+ channel openings in cell-attached configuration were suppressed by subsequent application of 5 microM glibenclamide but not of 100 microM nifedipine. 7. These results suggest that in pig proximal urethra, nifedipine inhibits the glibenclamide-sensitive 43 pS K+ channel activity mainly through extracellular blocking actions on the K+ channel itself.  相似文献   

19.
1. The roles of both Ca2+ and adenosine 3':5'-cyclic monophosphate (cyclic AMP) in carbachol and K(+)-stimulated [3H]-noradrenaline release from SH-SY5Y human neuroblastoma cells were examined. 2. Both carbachol and K+ caused a time- and dose-related stimulation of [3H]-noradrenaline release. The release event in perfused cells was monophasic. Half-maximum stimulation measured in statically incubated (3 min) cells was 38 +/- 4 microM and 63 +/- 4 mM respectively. K+ (100 mM, added)-evoked release was greater than that produced by carbachol (1 mM). 3. Both carbachol and K+ caused a time- and dose (measured at 3 min)-related stimulation of cyclic AMP formation with half-maximum stimulation occurring at 5 +/- 1 microM and 49 +/- 2 mM respectively. In contrast to its effects on release, carbachol produced a greater stimulation of cyclic AMP formation than K+. 4. K(+)-stimulated [3H]-noradrenaline release was entirely dependent on Ca2+ entry as 2.5 mM Ni2+ abolished release. However, carbachol-evoked (1 mM) release appeared to be unaffected by Ni2+ pretreatment. 5. These data suggest that in SH-SY5Y cells, elevated cyclic AMP levels are not directly involved in [3H]-noradrenaline release. In addition, carbachol-stimulated release is largely independent of extracellular Ca2+ possibly implying a role for intracellular stored Ca2+ in the release process.  相似文献   

20.
Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ release was examined in neurons isolated from the mollusc Helix pomatia using Ca2+ indicator fura-2 and fluorescent digital-imaging microscopy technique. Extracellular application of caffeine caused a fast and pronounced augmentation of [Ca2+]i whose amplitude and kinetics differ in the centre of the cell and near its membrane. Mean values of caffeine-induced increase of [Ca2+]i were 0.97 +/- 0.11 microM at the periphery and 0.53 +/- 0.13 microM in the centre. The rates of rise and relaxation of caffeine-evoked [Ca2+]i transients were faster near the membrane. Pressure injection of inositol, 1,4,5-trisphosphate into the same neurons produced an abrupt and significant increase of [Ca2+]i in the centre (mean value of inositol 1,4,5-trisphosphate-induced elevation = 0.55 +/- 0.11 microM) while the response was smaller or even absent near the cellular membrane. Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ transients did not affect each other. The data obtained indicate that in snail neurons these two calcium pools are not overlapping and at least some part of the caffeine-sensitive store is located close to the cellular membrane and that the inositol 1,4,5-trisphosphate-sensitive one is located in the centre of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号