首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ MAS NMR spectroscopy under flow conditions and on‐line gas chromatography have been applied to study the onset of the conversion of methanol on zeolite HZSM‐5 at temperatures between 373 and 573 K. In the steady states of methanol conversion at T ⩾ 523 K, by on‐line gas chromatography mainly the formation of ethene and propene was observed. Simultaneously recorded in situ 13C MAS NMR spectra show signals at 12–25 ppm and at ca. 125–131 ppm indicating the presence of adsorbed C4–C6 olefins. The observation of these adsorbates on a working catalyst supports the “hydrocarbon pool” mechanism previously proposed for the methanol‐to‐hydrocarbon conversion on acidic zeolites. Methanol conversion at 473 and 573 K and subsequent purging of the catalyst with dry nitrogen at 293 K led to a 13C MAS NMR signal at 59 ppm due to methoxy groups. No hints to the presence of ethoxy, propoxy or butoxy groups and the formation of alkyl oxonium ions were found by in situ 13C MAS NMR spectroscopy under flow conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A novel one-pot catalytic synthesis of 1-benzoylpyrene through acylation of pyrene with benzoic anhydride catalyzed by several heteropoly acids (HPAs) was investigated. Pure 1-benzoylpyrene was obtained and its structure was identified by GC/MS, FT-IR and 1H NMR spectra. Silica-supported phosphotungstic heteropoly acid (PW/SiO2) was found to be the most active catalyst in the acylation. The yield and the selectivity of 1-benzoylpyrene were up to 62.5% and 100%, respectively. The effects of experimental parameters on the catalytic acylation reaction, and the possibility of reusability of PW/SiO2 catalyst were studied. PW/SiO2 catalyst is easily separable from the reaction mixture and reusable without loss of its activity.  相似文献   

3.
A synergetic effect in the methane oxidation activity of palladium and manganese hexaaluminate was studied over Pd-modified manganese-hexaaluminate catalysts, prepared by incipient wetness impregnation and calcined at 1,200?°C. The magnitude of the synergetic effect is found to be depends on the palladium precursor: it is higher for palladium nitrate and palladium acetate than for tetrachloropalladic acid. The Pd/MnLaAl11O19 catalysts were characterized by X-ray diffraction, X-ray microanalysis, transmission electron microscope and temperature-programmed reduction with hydrogen. These data were compared with the properties of Pd/Al2O3 catalysts. At variation of Pd-precursors, a minor trend to the decrease of the Pd particle size was observed at transition from the ex-chloride Pd/MnLaAl11O19 catalyst with uniform Pd-distribution profile to the ex-nitrate and ex-acetate catalysts with egg-shell Pd-distribution. Slightly smaller size of metal palladium particles in the ex-nitrate and ex-acetate catalysts leads to the formation of larger amount of PdO dispersed on their surface during oxygen-pretreatment in H2-TPR experiments (Pd/PdO atomic ratio was 1/4) and under methane-oxidation mixture in comparison with ex-chloride catalysts (Pd/PdO?=?4/1). The palladium addition to manganese-hexaaluminate changes strongly its redox properties, as result Mn3+ reduction to Mn2+ take place about 100?°C below that of pure hexaalunimate. The latter indicate probably on the higher oxygen mobility in Pd-modified manganese-hexaaluminate. A higher PdO/Pd ratio formed in the ex-nitrate and ex-acetate Pd-modified manganese-hexaaluminate catalysts together with the high oxygen mobility provide the synergetic effect in methane oxidation activity at light-off temperature region. The high catalytic activity of manganese-hexaaluminate ensures methane combustion efficiency of the Pd-modified manganese-hexaaluminate catalysts at temperature above 700?°C.  相似文献   

4.
Coke formation and catalyst deactivation by the reaction of methanol over a zeolitic catalyst based on H-ZSM-5 for various stream gases (N2, H2 or C4H10) were studied by13C CP MAS NMR,29Si MAS NMR,129Xe NMR and catalytic test reactions with different stream gases (N2, H2, C4 H10). The rate of deactivation varies in the order N2 < H2 < C4H10, which can be explained by cracking of paraffinic, olefinic and alkylaromatic coke deposits under the influence of the hydrogenating properties of the stream gas.  相似文献   

5.
AFM has been used to study the effects of pretreatment gases on Pd/SiO2 supported thin film catalysts during 1,3-butadiene hydrogenation. The Pd/SiO2 catalyst, treated with O2 followed by H2 at 450°C, has an initial conversion of 85% and a surface morphology of 60 x 65 nm2 Pd grains and only deactivates slightly. After a second treatment, the reactivity was fully recovered and the surface morphology exhibits a redispersion of the Pd grains. The catalyst with a similar initial reactivity and morphology but only treated in H2, shows a decrease in activity and coalescence of Pd grains after repeated treatment. XPS studies have shown that the O2 and H2 treated Pd/SiO2 catalyst has a lower Pd binding energy than the H2 treated Pd/SiO2. The effect of the substrate thickness and composition is also reported.  相似文献   

6.
TiO2 and Pd-modified TiO2 photocatalysts were prepared by sol–gel method. X-ray diffraction (XRD) data showed that the presence of Pd in TiO2 catalyst decreases the crystalline size of TiO2 and stabilizes anatase phase. The study of the photocatalytic activity of the films via Linear Sweep Voltametry (LSV) plots and antibacterial test against Escherichia coli ATCC 25922—a gram negative bacterium—showed that Pd increases the photocatalytic activity of the coatings. Besides, the sequence of layer deposition (TiO2 and Pd-modified TiO2) influences the photocatalytic properties. In other words, more photocatalytic activity is obtained when Pd-modified layer is deposited first.  相似文献   

7.
The supported aqueous phase methodology was applied to the catalytic system Pd(OAc)2/5TPPTS, a catalyst precursor of the Trost–Tsuji reaction. The characterization of the solid by 31P MAS NMR spectroscopy confirms the reduction by the phosphines of Pd(II) to Pd(0) as Pd(TPPTS)3. The catalytic properties of this solid were determined for the allylic substitution of (E)-cinnamyl ethyl carbonate by nucleophiles such as ethyl acetoacetate, dimethyl malonate, morpholine, phenol and 2-mercaptopyridine and were compared to those of the same catalytic system in a biphasic water/nitrile medium. Having demonstrated the absence of palladium leaching and having solved the problem of water leaching from the solid into the organic solvent, the SAP Pd catalyst was engaged with success in a continuous flow experiment, demonstrating the possibility to reach a productivity superior to 2200 moles of carbonate selectively converted per mole of palladium within 11 h. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The present work has been undertaken to tailor Pt/Al2O3 catalysts active for NO oxidation even after severe heat treatments in air. For this purpose, the addition of Pd has been attempted, which is less active for this reaction but can effectively suppress thermal sintering of the active metal Pt. Various Pd-modified Pt/Al2O3 catalysts were prepared, subjected to heat treatments in air at 800 and 830 °C, and then applied for NO oxidation at 300 °C. The total NO oxidation activity was shown to be significantly enhanced by the addition of Pd, depending on the amount of Pd added. The Pd-modified catalysts are active even after the severe heat treatment at 830 °C for a long time of 60 h. The optimized Pd-modified Pt/Al2O3 catalyst can show a maximum activity limited by chemical equilibrium under the conditions used. The bulk structures of supported noble metal particles were examined by XRD and their surface properties by CO chemisorption and EDX-TEM. From these characterization results as well as the reaction ones, the size of individual metal particles, the chemical composition of their surfaces, and the overall TOF value were determined for discussing possible reasons for the improvement of the thermal stability and the enhanced catalytic activity of Pt/Al2O3 catalysts by the Pd addition. The Pd-modified Pt/Al2O3 catalysts should be a promising one for NO oxidation of practical interest.  相似文献   

9.
Bimetallic Pt–Pd/SiO2–Al2O3 catalysts exhibited much higher activities in aromatic hydrogenation of distillates than monometallic Pt/SiO2–Al2O3 and Pd/SiO2–Al2O3 catalysts. The studies of extended X‐ray absorption fine structure (EXAFS) indicated that there was an interaction between Pt and Pd in the Pt–Pd/ SiO2–Al2O3 catalyst. Furthermore, from the EXAFS, it was assumed that the active metal particle on the Pt–Pd/SiO2–Al2O3 catalysts is composed of the “Pd dispersed on Pt particle” structure. Regarding both the activities of aromatic hydrogenation and the EXAFS results, it was concluded that the Pd species dispersed on Pt particles were responsible for the high activity of the bimetallic Pt–Pd/SiO2–Al2O3 catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A ligand-free heterogeneous metal catalyst system (represented as Pd/SiO2 (O)) derived by calcination of Pd(acac)2/SiO2 in air and its catalytic properties toward the Heck coupling of bromobenzene (PhBr) and styrene have been studied. X-ray photoelectron spectroscopy (XPS) and catalytic results demonstrate that most of Pd2+ is reduced to Pd0 on SiO2 by N,N-dimethylacetamide (DMA) during the Heck reaction and that the resulting Pd0/SiO2 is highly active for the Heck reaction, the remaining Pd2+/SiO2 is not responsible for the high activity. Pd/SiO2 (O) possesses incomparable advantages over a heterogeneous homolog (represented as Pd/SiO2 (H)) prepared by reduction of Pd(acac)2/SiO2 in H2 as a pre-catalyst in both activity and catalyst recycling. The activity over Pd/SiO2 (O) is comparable to that over a homogeneous Pd system. Transmission electron microscopy (TEM) analysis illustrates that the high activity over Pd/SiO2 (O) consists in the small size of supported Pd particles generated in-situ with gentle reducing agents at a mild temperature.  相似文献   

11.
Dendrimer‐stabilized palladium nanoparticles were formed in the reduction of palldium bis(acetylacetonate) [Pd(acac)2] in the presence of phosphine dendrimer ligands using hydrogen in tetrahydrofuran. The resulting Pd nanoparticles were characterized by TEM, 31P NMR and 31P MAS NMR. The results indicated that the dendritic phosphine ligands were oxidized to phosphine oxides. These dendrimer‐stabilized Pd nanoparticles were demonstrated to be efficient catalysts for Suzuki and Stille coupling reactions and hydrogenations. The dendritic wedges served as a stabilizer for keeping the nanoparticles from aggregating, and as a vehicle for facilitating the separation and/or the recycling of the Pd catalyst. In the case of the Suzuki coupling reaction, these Pd nanoparticles exhibited high catalytic efficiency (TON up to 65,000) and air stability as compared with the commonly used homogeneous catalyst tetrakis(triphenylphosphine)palladium [Pd(PPh3)4]. In addition, the results obtained from the bulky dendritic substrate suggest that the Pd nanoparticles might act as reservoir of catalytically active species, and that the reaction is actually catalyzed by the soluble Pd(0) and/or Pd(II) species leached from the nanoparticle surface.  相似文献   

12.
Catalytic dehydrogenation of propane has recently received considerable attention because of the increasing demand for propene. Among several catalysts, PtSnNa/ZSM-5 catalyst is one of the most suitable ones. In this study, PtSnNa/ZSM-5 catalysts with different content of chlorine were prepared by changing the time of catalyst dechlorination. The obtained catalysts were characterized by X-ray fluorescence (XRF), XRD, nitrogen adsorption, 27Al MAS NMR, NH3-TPD, H2 chemisorption and TPR. It was found that with the increase of treatment time, more framework aluminum atoms were removed from tetrahedral positions, leading to the loss of Sn species and the decrease of catalyst acidity. Meantime, the porous properties and the interactions between Pt and Sn of the catalysts changed remarkably, which was disadvantageous to the reaction. Compared with the dechlorinated catalysts, the fresh sample with suitable content of chlorine exhibited the best reaction activity and stability. The average yield of propene was about 30.4% over 45 h for the reaction of propane dehydrogenation at 590 °C. Finally, a model was proposed for the influence of dechlorinated treatment on catalytic properties of PtSnNa/ZSM-5 catalyst for propane dehydrogenation.  相似文献   

13.
The dehydrogenation of propane to propylene over Cr2O3/Al2O3, Pd/Al2O3 and Pt/SiO2 has been investigated in the temperature range 580–618°C. Runs were performed on propane, alone or in the presence of nitrogen (as a diluent), with complete analysis of the reaction products. The reaction was carried out in a fixed bed reactor at space velocities from 450–800 h?1 which are close to industrial values and at pressures from 0.3 to 1 atm. A set of runs was made over a commercial chromia-alumina catalyst (10% Cr2O3) and over a promoted catalyst prepared in the laboratory by impregnation (16.8% Cr2O3 + 2% K2O). The latter catalyst showed high selectivity and stability even when subjected to continuous cycles of dehydrogenation, regeneration and purging. Of the two noble metal supported catalysts used, reduced Pd/Al2O3 showed higher activity than Pt/SiO2 at 618°C. The former catalyst gave a propylene yield of around 98% at 20% conversion level.  相似文献   

14.
《Journal of Catalysis》2007,245(1):173-183
Novel SiO2-supported chiral Cu-bis(oxazoline) (BOX) complexes for asymmetric Diels–Alder reactions were prepared by combining metal-complex immobilization with surface functionalization using achiral silane-coupling reagents on SiO2. We found that the surface functionalization of a SiO2-supported Cu-BOX catalyst with achiral 3-methacryloxypropyltrimethoxysilane dramatically increased enantioselectivity in the asymmetric Diels–Alder reaction of cyclopentadiene and 3-acryloyl-2-oxazolidinone. The Cu-BOX complexes on bare and functionalized SiO2 surfaces were characterized by XAFS, ESR, FT-IR, UV/vis, and 29Si solid-state MAS NMR. The large increase in enantioselectivity by achiral surface species without chiral center may be due to a glue effect, creating a new chiral ensemble structure at the surface.  相似文献   

15.
The synthesis technology of linear alkylbenzenes (LABs) was studied through the preparation of an Al‐SBA‐15 catalyst, the optimization of alkylation conditions, and the regeneration of deactivated catalyst. The hydro‐refining over the Pd/Al2O3 catalyst was carried out to remove unsaturated hydrocarbon impurities from the LAB. The results of the alkylation reactions over the Al‐SBA‐15 catalyst in a liquid fixed bed reactor showed that the olefin conversion remained above 98 % for time on stream of 3000 h, and the LAB selectivity was above 93 % under the following conditions: temperature of 260 °C; pressure of 5.0 MPa; weight hourly space velocity (WHSV) of 1.0 h?1; and the molar ratio of benzene to olefin of 25:1. Through the burning coke regeneration, the catalytic performance of the deactivated alkylation catalyst was satisfactorily restored. The quality of the LAB synthesized through alkylation and hydro‐refining was better than that of the industrial LAB produced using the hydrofluoric acid catalytic process.  相似文献   

16.
《Catalysis communications》2007,8(11):1567-1572
Enhanced performance of methane dehydro-aromatization reaction (MDA) were achieved on a Mo-based HZSM-5 zeolite catalyst in which HZSM-5 were pretreated by a proper amount of NH4F (Mo/HZ(F)). The results of NH3-TPD and 27Al MAS NMR demonstrated that the number of Brönsted acid sites decreased on the HZSM-5 zeolite and Mo/HZSM-5 catalyst after NH4F treatment. TGA and TPO measurements showed that the Mo/HZ(F) catalysts were highly resistant to coke deposition, which resulted mainly from the elimination of the Brönsted acid sites after the pretreatment of the HZSM-5 zeolite with NH4F.  相似文献   

17.
Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer–Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99–110% H3PO4, a temperature range of 140–230 °C and using C3–C6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H3PO4, H4P2O7 and H5P3O10. For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H3PO4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration.  相似文献   

18.
This study tested the stability, activity, and selectivity of an alumina-supported Pd–In bimetallic catalyst during repetitive sulfide fouling and oxidative regeneration conditions. Nitrate reduction with hydrogen was used as the probe reaction in a continuous-flow packed-bed reactor to assess changes in the catalyst structure as a result of the fouling and regeneration processes. Partial regeneration of a severely sulfide-fouled Pd–In catalyst was achieved with a NaOCl/NaHCO3 solution. However, the regenerated catalyst had a reduced activity for NO3 ? reduction and increased selectivity towards NH3. Analysis of the catalyst bed after regeneration experiments using XPS, ICP-MS, and BET surface area revealed that bulk structural transformations of the Pd–In bimetallic catalyst occurred, as a result of preferential Pd dissolution near the column influent. The dissolved Pd showed limited mobility in the column, and was re-deposited on the catalyst, resulting in Pd enrichment on the catalyst surface and redistribution of Pd towards the end of the column. These changes along with residual sulfur content on the catalyst surface were likely responsible for the increased selectivity towards NH3. These results indicate the importance of limiting the exposure of reduced sulfur species to Pd-based catalysts, especially when treating contaminants like NO3 ?, where product selectivity is a priority.  相似文献   

19.
A series of θ-Al2O3 supported VOx catalysts, of different vanadium loadings, have been characterised and employed for the selective dehydrogenation of n-butane. Characterisation of the unreacted catalysts has been carried out by solid-state NMR (51V MAS NMR, 27Al MAS NMR and 27Al 3Q-MAS NMR), and FT-IR spectroscopies, with reference to previously acquired Raman and UV–vis spectroscopy data. As vanadium loading increases, so does the domain size of the supported vanadate units with significant quantities of V2O5 observed at the highest loadings. The influence of calcination, pre-reduction, reaction and regeneration on the structure of the catalysts has been studied by NMR, FT-IR, EPR, microanalysis and TEOM. Calcination disperses crystalline vanadate units, and at high loadings AlVO4 formation is observed. Pre-reduction reduces the vanadium oxidation state from 5+ to 3+, while regeneration results in the formation of highly crystalline V5+ species. From these data it is possible to determine structure–activity relationships, with polymeric vanadia clusters favouring the formation of butenes and butadienes, while more isolated species are highly active towards the formation of polynuclear aromatic hydrocarbons retained on the catalyst surface post-reaction. These large polynuclear aromatic hydrocarbons are however not the principle cause of catalyst deactivation in this reaction.  相似文献   

20.
Activated carbon based palladium impregnated catalyst (Pd/C) was prepared for the reactive removal of carbon monoxide (CO) gas under ambient air conditions. For this, active carbon of 1250 m2/g surface area was impregnated with palladium salt to get Pd/C catalyst, containing palladium from 4.0 to 8.0% (w/w). Catalytic efficiency of the catalyst against CO gas was determined under dynamic conditions by passing CO–air mixture to the fixed bed of the Pd/C catalyst. Results indicated that Pd/C catalyst was continuously adsorbing and actively removing CO gas during the course of the palladium catalyzed reaction, i.e., CO + 1/2 O2 → CO2 and was found capable of providing excellent protection against CO gas. Moisture content (humidity) of inlet CO–air mixture indicated it to be an important factor affecting the CO removal efficiency of the catalyst, as an increase in humidity after the CO breakthrough resulted in to the activation of the catalyst due to the generation of hydroxyl groups and enhanced protection by the regeneration of the catalyst. Study indicated that Pd/C catalyst works as a catalytic converter, i.e., the continuous conversion of CO to CO2 using atmospheric oxygen and moisture. In order to determine the shelf life, the Pd/C catalyst was also evaluated for its performance after accelerated ageing at 70 °C and 50% relative humidity (RH) for 3.75 and 7.5 months. The catalyst was found to be working efficiently for 3.75 months but after 7.5 months it could not provide 100% protection against CO gas, however, the same catalyst started giving 100% protection after regeneration. Hence, studies indicated the Pd/C catalyst to be a promising catalyst for the reactive removal of CO gas in enclosed spaces/compartments, coal mines, fire accidents and for getting the protection for longer duration under ambient air conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号