首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Atmospheric optical communication with a Gaussian Schell beam   总被引:7,自引:0,他引:7  
We consider a wireless optical communication link in which the laser source is a Gaussian Schell beam. The effects of atmospheric turbulence strength and degree of source spatial coherence on aperture averaging and average bit error rate are examined. To accomplish this, we have derived analytic expressions for the spatial covariance of irradiance fluctuations and log-intensity variance for a Gaussian beam of any degree of coherence in the weak fluctuation regime. When spatial coherence of the transmitted source beam is reduced, intensity fluctuations (scintillations) decrease, leading to a significant reduction in the bit error rate of the optical communication link. We have also identified an enhanced aperture-averaging effect that occurs in tightly focused coherent Gaussian beams and in collimated and slightly divergent partially coherent beams. The expressions derived provide a useful design tool for selecting the optimal transmitter beam size, receiver aperture size, beam spatial coherence, transmitter focusing, etc., for the anticipated atmospheric channel conditions.  相似文献   

2.
Chang SP  Kuo JM  Lee YP  Lu CM  Ling KJ 《Applied optics》1998,37(4):747-752
Several plano-convex aluminum thin films, ~30 nm thick in the center and ~2 mm in diameter, were deposited on microscope cover slides to function as inverse-Gaussian transmittive filters. By placing one of these filters in front of the Gaussian He-Ne laser, we can modify the beam intensity profile in the downstream direction. To yield a uniform beam, the position of the filter must be aligned in the transverse plane for maximum intensity at the output of the filter. These filters are easy to fabricate and are inexpensive. Most important, they can help produce collimated phase-coherent uniform beams, which are useful in high-precision fringe-analysis techniques.  相似文献   

3.
Abstract

Incoherent spectral beam combining (SBC) of multiple laser beams is accomplished along the emitters’ arraying direction. Considering that the output beams from a laser array (LA) usually have deflection angles, positional displacements and divergence angles even after being collimated, a propagation model of SBC systems based on multilayer dielectric gratings has been built up. On the basis, properties of the spectrally combined beam affected by parameters of the LA have been discussed in detail. Simulation results show that with the increase in the deflection angle, both the power and the beam quality of the combined beam degrade dramatically. The positional displacement has little impact on the intensity distribution and the beam quality of combined beam but change the wavelength composition of the combined beam. The divergence angle strongly affects the intensity distribution and the beam quality of the combined beam. Additionally, the effect of the deflection angle on the output beam quality is more obvious and may shift the beam spot when comparing with that of the divergence angle.  相似文献   

4.
A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.  相似文献   

5.
On the basis of vector diffraction theory, the tightly focusing properties of radially polarized controllable dark-hollow (CDH) beams are examined theoretically. Calculation results demonstrate that by choosing the initial parameters of the proposed light beams suitably, a sub-wavelength (0.422λ) longitudinally polarized light beam with high beam quality (82.2%) can be formed without any filters. Meanwhile, we find that a relatively long depth of focus benefits from larger beam order. The dependence of the focal spot size on the parameters such as truncation parameter, variation constant, and beam order is also explored in detail. Moreover, an alternative method to generate the CDH beams is proposed.  相似文献   

6.
Abstract

Edge emitting diode lasers with their divergent, highly elliptical and astigmatic beams in the visible spectrum are widely used in all branches of photonics. Usually the beams must be transformed into circular anastigmatic beams for the majority of applications. Holographic diffractive elements on spherical substrates are devised for transformation of beams to circular collimated beams. An off-axis holographic set-up is used to record diffractive elements into a thin photoresist layer as shallow surface-relief gratings working in reflection mode with curved and chirped grooves. The elements are destined for the diode lasers emitting at a suitable wavelength and with appropriate ellipticity and astigmatism. The performance of the elements is tested on the basis of intensity patterns and the elements produced at a focal plane on their illumination with a collimated expanded beam of a HeNe laser.  相似文献   

7.
In this work, we report on the results of a nanolithography experiment with a cold cesium beam. We have realized a brilliant and collimated cesium beam with a low longitudinal velocity (10 m/s) exploiting laser cooling techniques, in particular a pyramidal atomic funnel. The cesium atomic beam has been utilized to pattern gold substrates, using Self Assembled Monolayers (SAM) of thiols as resist, and a wet etching process. The pattern generated by a light mask, a one-dimensional standing e.m. wave, was characterized by diffraction and Atomic Force Microscopy (AFM) measurements, showing the presence of lines spaced half the wavelength of the standing wave (426 nm) with lateral size well below 100 nm.  相似文献   

8.
Ko SW  Lin TH  Huang YH  Jau HC  Chu SC  Chen YY  Fuh AY 《Applied optics》2012,51(10):1540-1545
This work demonstrates the electrical tuning of laser beam shape using an axially symmetric dye-dope liquid crystal (ASDDLC) device that is fabricated using a photo-alignment method. Various beam shapes can be obtained by linearly polarized Gaussian laser beams through an ASDDLC device under various applied voltages. The far-field intensity patterns generated by laser beams of selected shapes under various applied voltages are simulated, and the results are consistent with experiment. A rotatable petal-shaped beam is obtained by controlling the polarization of the output donut-shaped beam. The tenability of beam shape of light with a wavelength of 1064 nm, which is commonly used in biomedical applications, is also demonstrated.  相似文献   

9.
Li G  Li J  Cheah KW 《Applied optics》2011,50(31):G27-G30
A hyperbolic dispersion medium with a planar surface that can be used for subwavelength focusing is proposed. By combining the hyperbolic medium in a single slit with diffraction limit width, a laser beam could be focused to a subwavelength spot in the near field. Compared to a conventional superlens, the subdiffraction focusing in this work has higher optical throughput. Using a planar hyperbolic medium, which is actually alternating silver/dielectric multilayers, we showed that the focusing resolution of the designed device is down to ~λ/5 using green light illumination (at a wavelength of 514.5 nm).  相似文献   

10.
A birefringent wedge in a collimated 351-nm beam provides polarization smoothing at the Omega laser facility and provided it for the Nova laser. At the National Ignition Facility, the best place to put such an optic is after the final focus lens. In a converging beam, a flat birefringent plate can closely mimic the polarization-smoothing action of a wedge. In this new design the flat plate is nearly a Z-cut crystal; for the wedges, the optical axis of the crystal lies far from the plate normal.  相似文献   

11.
Aruga T  Li SW  Yoshikado S  Takabe M  Li R 《Applied optics》1999,38(15):3152-3156
A narrow light beam that propagates in the atmosphere with less disturbance than conventional light beams is introduced. The operating method and features of the newly proposed long-range nondiffracting beam (LRNB) are briefly demonstrated. Some experimental results of the atmospheric propagation of this beam at a distance of 500 m are shown in comparison with a conventional collimated beam and a focused beam. The results and related analyses show that the LRNB is much less influenced by atmospheric turbulence than other beams and suggest that the LRNB can apply to many fields.  相似文献   

12.
Light profile microscopy (LPM) is a recently developed technique of optical inspection that is used to record micrometer-scale images of thin-film cross-sections on a direct basis. In single beam mode, LPM provides image contrast based on luminescence, elastic, and/or inelastic scatter. However, LPM may also be used to depth profile the optical absorption coefficient of a thin film based on a method of dual beam irradiation presented in this work. The method uses a pair of collimated laser beams to consecutively irradiate a film from two opposing directions along the depth axis. An average profile of the beam's light intensity variation through the material is recovered for each direction and used to compute a depth-dependent differential absorbance profile. This latter quantity is shown from theory to be related to the film's depth-dependent optical absorption coefficient through a simple linear model that may be inverted by standard methods of numerical linear algebra. The inverse problem is relatively well posed, showing good immunity to data errors. This profilometry method is experimentally applied to a set of well-characterized materials with known absorption properties over a scale of tens of micrometers, and the reconstructed absorption profiles were found to be highly consistent with the reference data.  相似文献   

13.
Ueda M  Shiono T  Ito T  Yokoyama K 《Applied optics》1998,37(7):1165-1170
We have developed a diffractive micromachined chopper (DMC) for an IR wavelength of ~10 mum. This device operates mechanically by movable reflection grating beams. It modulates the diffraction efficiency by controlling the displacement of grating beams by an electrostatic force. For a CO(2) laser beam, a high modulation efficiency of 84% with an -0.8-dB small insertion loss was obtained by detecting 0th-order diffracted light. A novel pyroelectric IR microsensor with a DMC and a diffractive multilevel Si microlens was proposed and it demonstrated the detection of human existence.  相似文献   

14.
This paper reports the light emission from aligned multiwalled carbon nanotubes (MWNTs) under continuous wave CO(2) laser (λ = 10.6?μm) irradiation. Results indicate that the light emission is dependent on the angle θ between the laser incident direction and the nanotube axis. The relative intensity of the light emission at certain wavelengths shows a Lorentzian feature when θ varies from 0° to 90°. The Lorentzian fitting curve displays a distinct tendency between shorter (λ<600?nm) and longer wavelength (λ>700?nm). A minimum intensity was observed at θ(m) close to 67° under shorter wavelength, whereas a maximum intensity was shown at θ(m) of about 60° at longer wavelength. These results show the anisotropic property of aligned MWNTs.  相似文献   

15.
Bengtsson J 《Applied optics》1996,35(20):3807-3814
A kinoform that shapes the divergent beam from a semiconductor laser without using any other optical components was designed and fabricated. The kinoform-only concept means that the kinoform must perform both the actual beam shaping as well as focusing the divergent laser beam, correcting for the astigmatism of the laser, and correcting for the spherical aberration of the laser exit window. A rectangular beam of dimensions 1000 μm × 300 μm is formed 42 mm behind the kinoform. Of the total output from the laser, some 50% is incident upon the kinoform, of which ~50% will appear in the rectangular beam. The intensity uniformity error within the rectangle increases from the design value of 8% to 38% because of sensitivity to fabrication errors. The kinoform-only design for beam-shaping applications requires high manufacturing accuracy but is attractive because a system using such a component is easily mounted and aligned and, with the use of kinoform-replication techniques, can be mass produced at low cost.  相似文献   

16.
The Jones matrix calculus is applied to an electro-optic crystal with uniaxial symmetry when the light beam is incident nearly normally on the crystal face. The approach allows one to treat refracted waves and rays that diverge in the crystal and are modulated by an external low-frequency field. The effect of partial interference of overlapping refracted beams is allowed for and calculated for the case of uniform intensity of the beam over its cross section. The method is employed to analyze optical systems containing an imprecisely cut and aligned electro-optic crystal plate.  相似文献   

17.
With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of t he membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 degrees provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed.  相似文献   

18.
An electric field controlled two-dimensional higher order diffraction optical beam splitter has been realized based on a photorefractive higher order diffraction grating. In experiments, the splitter was produced by wave coupling (632.8 nm, 532.0 nm) at a small incident angle with a potassium lithium tantalate niobate single crystal. In the process of splitting, the incident beam of different wavelengths (632.8 nm, 532.0 nm) could be split into multi-output beams by the splitter. The influence of an externally applied electric field was studied and results show that the intensity of higher order diffraction could be controlled by the electric field. The polarization properties of higher order diffraction were discussed. An electric field controlled five–three optical beam splitter was investigated theoretically.  相似文献   

19.
A photorefractive beam splitter (PRBS) is introduced as an alternative to a polarizing beam splitter (PBS) for coupling optical power into reflective modulators in a free-space optical interconnection system. The PRBS uses a single diffraction grating recorded in a photorefractive material to redirect the incident laser light into the first diffraction order and onto the modulators. Reflected interconnection light not matching the Bragg angle criteria transmits uncoupled through the beam splitter. Experimental results show that the PRBS provides better, more uniform transmission for off-axis beams than the currently used PBS.  相似文献   

20.
Zhang JY  Xu Z  Kong Y  Yu C  Wu Y 《Applied optics》1998,37(15):3299-3305
We report a 10-Hz, highly efficient, widely tunable (from the visible to the IR), broadband femtosecond optical parametric generator and optical parametric amplifier (OPA) in BBO, LBO, and CBO crystals pumped by the frequency-doubled output of a regeneratively amplified Ti:sapphire laser at 400 nm. The output of the system is continuously tunable from 440 nm to 2.5 mum with a maximum overall efficiency of ~25% at 670 nm and an optical conversion efficiency of more than 36% in the OPA stage. The effects of the seed beam energy, the type of the crystal and the crystal length, and the pumping energy of the output of the OPA, such as the optical efficiency, the bandwidth, the pulse duration, and the group velocity mismatch between the signal and the idler and between the seeder and the pump, are investigated. The results provide useful information for optimization of the design of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号