首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Xiao H  Wang Z  Fan Z 《Applied optics》2011,50(19):3135-3144
The interfacial fluid thickness (IFT) concept was used to develop a harmonic-mean refractive index gradient magnitude threshold to retrieve the high refractive index gradient regions of an aerodynamically heated window. The retrieved high-gradient regions were used to reconstruct the refractive index field of the window. The numerical three-dimensional optical distortion evaluation was conducted for both the reconstructed and the original refractive index fields of the window using the ray-tracing program based on a recursive algorithm. Wave aberration results show that the methodology based on the IFT concept reduces the refractive index information required to capture the essential optical distortion of the window. The method can also be used for numerically evaluating the optical distortion of the window.  相似文献   

2.
Carnell MT  Emmony DC 《Applied optics》1995,34(28):6465-6470
The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.  相似文献   

3.
This report describes an optical phase contrast imaging technique for the measurement of wide bandwidth ultrasound fields in water. In this method, a collimated optical wavefront (λl = 810 nm) impinges on a wide bandwidth ultrasound pulse. The method requires that refractive index perturbations induced by the ultrasound field be sufficiently small. Specifically, on exit from the acoustic field, the phase of the optical wavefront must be proportional to the ray sum of local density taken in the direction of propagation of the incident optical wave. A similar restriction is placed on the dimensions of the ultrasound pulse. Repeated measurement of this phase as the ultrasound field is rotated through 180° about an axis normal to the direction of propagation of the incident optical wave generates the Radon transform of the ultrasonically induced refractive index perturbation. Standard tomographic reconstruction techniques are used to reconstruct the full three-dimensional refractive index perturbation. A simple two-lens imaging system and an optical signal processing element from phase contrast microscopy provide a method of directly measuring an affine function of the desired optical phase for small optical phase shifts. The piezo- and elasto-optic coefficients (the first partial derivatives of refractive index with respect to density and pressure) relate refractive index to density and pressure via a linear model. The optical measurement method described in this paper provides a direct, quantitative measurement of the piezo- and elasto-optic coefficients (from the density or pressure fields)  相似文献   

4.
A systematic and straightforward image processing method to extract quantitative phase and refractive index data from weak phase objects is presented, obtained using differential interference contrast (DIC) microscopy. The method is demonstrated on DIC images of optical fibers where a directional integration routine is applied to the DIC images to extract phase and refractive index information using the data obtained across the whole DIC image. By applying the inverse Abel transform to the resultant phase images, an accurate refractive index profile is obtained. The method presented here is compared to the refracted near-field technique, typically used to obtain the refractive index profile of optical fibers, and shows excellent agreement. It is concluded that through careful image processing procedures, DIC microscopy can be successfully implemented to obtain quantitative phase and refractive index information of optical fibers.  相似文献   

5.
Hu H  Li X  Zhang Y  Li T 《Applied optics》2006,45(16):3864-3870
A method is presented for inferring both the refractive index and the size distribution of aerosol from observations of a dual-scattering-angle optical particle counter (OPC). An existing prototype of an OPC with 60 degree and 90 degree dual-scattering angles was used for the experiments. Based on the high sensitivity of the OPC response to the refractive index of particulates, two families of size distribution curves may be calculated. The solution of the refractive index corresponds to the superposition of the two size distributions. This method was applied to the simulation and to the field measurements conducted in Beijing and Hefei, and the results of both are presented.  相似文献   

6.
Near infrared (NIR) optical tomography is an imaging technique in which internal images of optical properties are reconstructed with the boundary measurements of light propagation through the medium. Recent advances in instrumentation and theory have led to the use of this method for the detection and characterization of tumors within the female breast tissue. Most image reconstruction approaches have used the diffusion approximation and have assumed that the refractive index of the breast is constant, with a bulk value of approximately 1.4. We have applied a previously reported modified diffusion approximation, in which the refractive index for different tissues can be modeled. The model was used to generate NIR data from a realistic breast geometry containing a localized anomaly. Using this simulated data, we have reconstructed optical images, both with and without correct knowledge of the refractive-index distribution to show that the modified diffusion approximation can accurately recover the anomaly given a priori knowledge of refractive index. But using a reconstruction algorithm without the use of correct a priori information regarding the refractive-index distribution is shown as recovering the anomaly but with a degraded quality, depending on the degree of refractive index mismatch. The results suggest that provided the refractive index of breast tissue is approximately 1.3-1.4, their exclusion will have minimal effect on the reconstructed images.  相似文献   

7.
Meneses J  Gharbi T  Cornu JY 《Applied optics》2002,41(25):5267-5274
Our aim is to describe a method for detecting small deformations from a three-dimensional (3D) shape of large lateral dimensions. For this purpose the measurement method is based on the simultaneous utilization of several 3D optical systems and the phase-shifting technique. In this way, the following problems appear: optical distortion due to the large field observed, nonlinear phase-to-height conversion, conversion of image coordinates into object coordinates for each 3D optical system, and coordinate unification of all optical systems. The resolution is 50 microm with a field of view of 320 mm x 150 mm. We used this system to study the 3D human foot arch deformation under low loads in vivo. First results indicate the hysteresis behavior of the human foot under a low load (50 to 450 N).  相似文献   

8.
LSO/LuYAP phoswich detectors for small animal PET were developed to measure the depth of interaction (DOI), and to improve the spatial resolution at the edge of the field of view (FOV). The aim of this study was to optimize the optical coupling conditions between the crystal and photomultiplier tube (PMT) to maximize the light-collection efficiency, and to develop a method for rejecting scatter events by applying an equal energy window in each crystal layer. The light yields of the phoswich detector were estimated by changing the refractive index of the optical coupling material using a DETECT simulation. The accuracy of the DOI measurement on the phoswich detector, using an optical coupling material with the optimal light yield, were evaluated experimentally and compared with the air condition. The energy window for the photopeak events cannot be applied properly because the light outputs of LSO and LuYAP are different. The LSO/LuYAP photopeaks need to be superposed in order to effectively discriminate the scattered events by applying an equal energy window. The photopeaks of the LSO and LuYAP can be superposed by inserting a reflecting material between the crystals. The optimal coverage ratio of the inserting material was derived from a DETECT simulation, and its performance was investigated. In the simulation result, optimal refractive index of the optical coupling material was 1.7. The average DOI measurement errors of the LSO/LuYAP were 0.6%/3.4% and 4.9%/41.4% in the phoswich detector with and without an optical coupling material, respectively. The photopeaks of the LSO and LuYAP were superposed by covering 75% of the contact surface between the crystals with white Teflon. The DOI measurement errors of the LSO/LuYAP were 0.2%/2.4%. In this study, the optimal condition of the optical coupling material inserted between the crystal and PMT was derived to improve the accuracy of DOI measurement, and a photopeak superposition method of the LSO and LuYAP was developed in order to reject scatter events.  相似文献   

9.
According to the electromagnetic momentum interpretation due to Minkowski, the optical trapping force is determined by momentum transfer. The computation details related to computing the forces of optical radiation pressure on small particles using the scattered field three-dimensional (3D) grid finite difference time domain (FDTD) algorithm are presented. The technique is based on propagating the focused electromagnetic fields through the grid and determining the changes in the optical energy flow with and without the trapped object in the system. The Richards–Wolf vector field equations are applied to the scattered FDTD approach to specify an incident focused beam. We show computational results for a high refractive index particle. These results are in agreement with published experiments and are similar to other computational methods. Compared with some other calculation results using the FDTD method, our results are more consistent with the results measured.  相似文献   

10.
Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface‐enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high‐density “hot spots” in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design.  相似文献   

11.
《Journal of Modern Optics》2013,60(9-10):1251-1258
An analysis is presented of the evolution of the electromagnetic field which propagates in a low-birefringence, single-mode fibre supporting two degenerate orthogonally polarized states in the presence of the interaction provided by the intensity-dependent part of the refractive index (the optical Kerr effect). This approach leads, in particular, to a generalization of the well-known ellipse-rotation method used to measure the magnitude and sign of the nonlinear refractive index coefficient in bulk media.  相似文献   

12.
Thin ( 1 μm) crystalline ZnO films with a good optical quality and good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high refractive index ( 2.0 at λ = 632.8 nm) ZnO films resembling the single crystal form, and ZnO films with considerably lower (typical difference 0.05) refractive indices. The refractive index of the latter ZnO layers is adjustable ( 1.93–1.96 at λ = 632.8 nm) through the process deposition parameters. It is shown that the difference in refractive index between the two ZnO types most probably results from a difference in package density of the crystal columns. The optical waveguide losses of both ZnO types are typically 1–3 dB/cm at λ = 632.8 nm, however the low refractive index ZnO layers need a post-deposition anneal step to obtain these values. The two ZnO types are used to fabricate optical channel-and slab waveguides with small refractive index differences.  相似文献   

13.
The design and optimization of light-based analytical devices often require optical characterization of materials involved in their construction. With the aim of benefiting lab-on-a-chip applications, a transmission spectrometric method for determining refractive indices, n, of transparent solids is presented here. Angular dependence of the reflection coefficient between material-air interfaces constitutes the basis of the procedure. Firstly, the method is studied via simulation, using a theoretical algorithm that describes the light propagation through the sample slide, to assess the potentially attainable accuracy. Simulations also serve to specify the angles at which measurements should be taken. Secondly, a visible light source and an optical fiber spectrometer are used to perform measurements on three commonly used materials in optical lab-on-a-chip devices. A nonlinear regression subroutine fits experimental data to the proposed theoretical model and is used to obtain n. Because the attainable precision using this method of refractive index determination is dictated by the uncertainty in the transmission measurements, the precision (with 95% confidence) for mechanically rigid samples, namely glass and poly(methyl methacrylate) (PMMA), is higher than those estimated for the elastomer sample (in-house-molded poly(dimethylsiloxane) (PDMS)). At wavelengths with the highest signal-to-noise ratio for the spectrometer setup, the estimated refractive indices were 1.43+/-0.05 (580 nm) for PDMS, 1.54+/-0.02 (546 nm) for glass, and 1.485+/-0.005 (656 nm) for PMMA. Accurate refractive index estimations with an average precision equal to 0.01 refractive index units (RIU) were obtained for PMMA and glass samples, and an average precision of 0.09 RIU for the PDMS molded slide between 550 and 750 nm was obtained.  相似文献   

14.
In this study, we investigated the possibility of using Zn-doped ITO film as an alternative material for conventional SiO2 waveguides used in optical communication. The Zn-doped ITO films were deposited on quartz substrates using a combinatorial sputtering system, which yielded composition spread Zn-In-Sn-O (ZITO) films by co-sputtering two targets of ITO and ZnO. The Zn-doped ITO films deposited at room temperature exhibited an amorphous phase in the Zn content [Zn/(Zn+In+Sn)] range of 39-54 at%. The Zn-doped ITO films deposited at low oxygen partial pressure showed resistivity below 10(-3) ohms cm and optical transmittance of approximately 85% at 550 nm. The refractive index calculated by the Swanepoel method was found to be dependent on the Zn content in the Zn-doped ITO films. The calculated bending loss from the refractive index indicated that Zn-doped ITO could be utilized as a new waveguide material for various optical devices, such as optical splitters, wavelength division multiplexers (WDMs), optical modulators, and optical switches.  相似文献   

15.
Hirai A  Matsumoto H 《Applied optics》2006,45(22):5614-5620
A technique for the measurement of the group refractive index wavelength dependence of optical materials using a low-coherence tandem interferometer and a spectrometer is proposed. Four channeled spectra resulting from interferences of light beams from different pairs of optical paths are used for the calculation of optical path differences. The group refractive index wavelength dependence is calculated from these optical path differences generated from the sample under measurement. No a priori information of the geometric thickness of a sample is required. The wavelength dependence of the group refractive index of the samples BK7 parallel plate of 5.200 and 10.025 mm from 675 to 850 nm is experimentally measured with an accuracy of the order of 10(-5) and a repeatability of the order of 10(-9).  相似文献   

16.
Porous silicon (PS) has a great potential in optical applications due to its tuneable refractive index. In particular, multilayer structures consisting of alternating PS layers with different refractive indices can be used as interference filters for applications in the field of optoelectronics and sensors. In the present work, the optical properties of PS single layers and multilayer structures were studied. Since the refractive index of PS varies depending on the air content of the porous matrix, the PS structures were modelled as an homogeneous mixture of silicon and air, according to the effective medium theories (EMTs). By adjusting the refractive index and thickness of each individual layer, we can obtain a stack of PS layers with the desired optical properties, resulting in interference filters of predetermined bandwidth.  相似文献   

17.
Li Y  Wei T  Montoya JA  Saini SV  Lan X  Tang X  Dong J  Xiao H 《Applied optics》2008,47(29):5296-5304
We report a new method to measure the CO(2)-laser-irradiation-induced refractive index modulation in the core of a single-mode optical fiber for the purpose of design and fabrication of long-period fiber gratings (LPFGs) without applying tension. Using an optical fiber Fabry-Perot interferometer, the laser-induced axial refractive index perturbation was measured. We found that the CO(2)-laser-irradiation-induced refractive index change in the fiber core had a negative value and that the magnitude was a sensitive function of the laser exposure time following almost a linear relation. Under the assumption of a Gaussian-shaped refractive index modulation profile and based on the first two terms of Fourier series approximation, the measured refractive index perturbations were used to simulate the LPFG transmission spectra. LPFGs with the same laser exposure parameters were fabricated without applying tension, and their spectra were compared with those obtained by simulations.  相似文献   

18.
A novel and accurate refractive index profile synthesis method for planar optical waveguides is presented and demonstrated using the transmitted near-electric-field-data. This method is based on the inverse transmission-line (TL) technique. From Maxwell's equations, a TL equivalent circuit (electric T-circuit) for the refractive index profile of a planar optical waveguide is derived. The authors demonstrate how to use this model to carry out the inverse problem and synthesise the exact refractive index profile numerically from near-field-data. The TL method can reconstruct arbitrary refractive index profiles for planar optical waveguides that support singlemode or multi- modes. The cases of both symmetric and asymmetric arbitrary refractive index profile planar waveguides are discussed. The accuracy of the reconstructed waveguides is examined numerically.  相似文献   

19.
A simple low-cost optical method for differentiating two birefringent plastic materials in tissue sections is described. The method relies on the measurement of the refractive indices of the materials as standard samples, then mounting the specimen containing the mixture of materials in a medium of intermediate refractive index. The optical properties of the materials in this mounting medium permit their separate identification by use of Becke's lines. In the specific example used, ultra-high molecular weight polyethylene (UHMWPE; refractive indices 1.521 and 1.529) and polyacetal (refractive indices 1.476 and 1.492) were distinguishable from each other by mounting in sandalwood oil (refractive index 1.510). Illustrative results are given for the analysis of the comparative amounts of these two polymers in the tissues adjacent to five knee replacements obtained at revision surgery. In every case there were more UHMWPE particles than polyacetal particles.  相似文献   

20.
The dispersive refractive index n(λ) and thickness d of chalcogenide glass thin films are usually calculated from measurements of both optical transmission and wavelength values. Many factors can influence the transmission values, leading to large errors in the values obtained for n(λ) and d. Anovel optical method is used to derive n(λ) and d for AsSe semiconducting glass thin films deposited by thermal evaporation in the spectral region where k(2) ? n(2), using only wavelength values. This entails obtaining two transmission spectra: one at normal incidence and another at oblique incidence. The procedure yields values for the refractive index and average thickness of thermally evaporated chalcogenide films to an accuracy better than 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号