共查询到13条相似文献,搜索用时 0 毫秒
1.
Concentrating solar thermal power and photovoltaics are two major technologies for converting sunlight to electricity. Variations of the annual solar irradiation depending on the site influence their annual efficiency, specific output and electricity generation cost. Detailed technical and economical analyses performed with computer simulations point out differences of solar thermal parabolic trough power plants, non-tracked and two-axis-tracked PV systems. Therefore, 61 sites in Europe and North Africa covering a global annual irradiation range from 923 to 2438 kW h/m2 a have been examined. Simulation results are usable irradiation by the systems, specific annual system output and levelled electricity cost. Cost assumptions are made for today's cost and expected cost in 10 years considering different progress ratios. This will lead to a cost reduction by 50% for PV systems and by 40% for solar thermal power plants. The simulation results show where are optimal regions for installing solar thermal trough and tracked PV systems in comparison to non-tracked PV. For low irradiation values the annual output of solar thermal systems is much lower than of PV systems. On the other hand, for high irradiations solar thermal systems provide the best-cost solution even when considering higher cost reduction factors for PV in the next decade. Electricity generation cost much below 10 Eurocents per kW h for solar thermal systems and about 12 Eurocents/kW h for PV can be expected in 10 years in North Africa. 相似文献
2.
3.
A key drawback of using latent heat thermal storage systems for concentrating solar thermal power plants is the low thermal conductivity of the phase change material during the melting and solidification processes. This paper investigates an approach for reducing the thermal resistance by utilising axially finned heat pipes. A numerical model simulating the phase change material melting and solidification processes has been developed. This paper also includes the models of the evaporation and condensation of the heat pipe working fluid. The results show that by adding four axial fins and including the evaporation and condensation, the overall thermal performance of the storage system is enhanced significantly compared to having bare heat pipes. After 3 h a total of 106% increase in energy storage is obtained during the charging process. The results also show that the combined effect of incorporating the evaporation/condensation process and adding the fins leads to a threefold increase in the heat storage during the first 3 h. During the discharge process, there was a 79% increase in energy discharged and also the combined effect of incorporating the evaporation/condensation as well as adding the fins results in an almost four fold increase in the heat extracted within the first 3 h. A parametric analysis has also been carried out to analyse the effect of the finned heat pipe parameters after incorporating evaporation and condensation of the heat pipe working fluid. 相似文献
4.
为充分利用建筑屋顶,解决光伏光热一体化(PV/T)集热器光电转换效率的高温减益问题,并提高太阳能综合利用率和集热品位,文章构建了一种基于太阳光谱分频利用技术的光伏/光热模块分离式的小型聚光式PV/T集热器。通过建立其光/电/热理论分析模型及TracePro/Fluent数值仿真模型,以南京地区气象数据为例,综合分析其光/电/热性能,结果表明:该集热器以与安装地纬度等值的倾角南北轴向放置时,其年均光学效率为64.97%,工质出口温度为90℃时的系统光电/光热效率分别为12.47%,40.09%,系统综合热效率达72.91%,且其结构简单、外形轻薄,有望实现与普通建筑的有效结合。 相似文献
5.
Prasanta Kumar Ojha S.K. Rath T.K. ChongdarN.M. Gokhale A.R. Kulkarni 《Journal of power sources》2011,196(10):4594-4598
A series of SOFC glass sealants with composition SrO (x), La2O3 (15), Al2O3 (15), B2O3 (40 − x), and SiO2 (30) [x = 10, 15, 20, 25 and 30] (wt.%) [SLABS] are investigated for their structure property correlations at different compositions. Quantitative Fourier transform infrared spectroscopy shows structural rigidity with increasing SrO content, as demonstrate by an increase in the Si-O-Si/O-Si-O bending and B-O-B stretching frequencies. The role of SrO as a modifier dominates the control of the structure and behaviour of glasses compared with the effect of network formers, i.e., the B2O3/SiO2 ratio. Consequent to the structural changes, increasing substitution of B2O3 by SrO the glasses causes increases in the density, glass transition temperature and dilatometric softening point. On the other hand, the crystallization temperatures show a decreasing trend and the coefficient of thermal expansion increases with increase in substitution. 相似文献
6.
Vasiliki Tzifa Alexandra G. Papadopoulou Vaggelis Marinakis John Psarras 《国际可持续能源杂志》2017,36(1):28-46
Buildings' thermal insulation has received a lot of attention these past years, in an effort to reduce the sector's high energy consumptions. A number of non-destructive methods have been used in order to evaluate in situ the building envelope's effective thermal transmittance, characterised, however, by long-lasting measurement periods. This paper examines the uncertainty and method limitations to use short-time measurements using an infrared camera for this purpose, but also within real environmental conditions that are inevitably unsteady during the measurement series. Experimental measurements were realised with three different infrared cameras, and the results show that a value of effective thermal transmittance could be estimated in situ by a relative uncertainty that does not exceed 20% (coverage factor?=?2), a reliable estimation as long as all systematic errors are identified and diminished through calculations. 相似文献
7.
Terushige Fujii Haruo Kawasaki Shinichi Tooyama Katsumi Sugimoto Hitoshi Asano 《亚洲传热研究》2005,34(8):564-578
The two‐phase flow thermal control system, using latent heat of the internal fluid, has received a great deal of research interest as a method for heat removal on the space station and the Space Solar Power System (SSPS). The system has a much lower weight than the single‐phase flow, and the temperature can be accurately controlled by changing the saturated pressure inside the loop. To date, this system has not been put into practical use. Numerical analyses were therefore used to investigate the dynamic responses of the loop and to investigate the operational characteristics of the thermal control system. A simulation model was constructed, and the results of the numerical analysis were compared with the experimental results. Good agreement was obtained between analytical and experimental results. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(8): 564–578, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20090 相似文献
8.
Solid biomass materials are an important industrial fuel in many developing countries and also show good potential for usage in Europe within a future mix of renewable energy resources. The sustainable use of wood fuels for combustion relies on operation of plant with acceptable thermal efficiency. There is a clear link between plant efficiency and environmental impacts due to air pollution and deforestation. To supplement a somewhat sparse literature on thermal efficiencies and nitrogen oxide emissions from biomass-fuelled plants in developing countries, this paper presents results for tests carried out on 14 combustion units obtained during field trials in Sri Lanka. The plants tested comprised steam boilers and process air heaters. Biomass fuels included: rubber-wood, fuelwood from natural forests; coconut shells; rice husks; and sugar cane bagasse. Average NOx (NO and NO2) emissions for the plants were found to be 47 gNO2 GJ−1 with 18% conversion of fuel nitrogen. The former value is the range of NOx emission values quoted for combustion of coal in grate-fired systems; some oil-fired systems and systems operating on natural gas, but is less than the emission levels for the combustion of pulverized fuel and heavy fuel oil. This value is significantly within current European standards for NOx emission from large combustion plants. Average thermal efficiency of the plants was found to be 50%. Observations made on operational practices demonstrated that there is considerable scope for the improvement of this thermal efficiency value by plant supervisor training, drying of fuelwood and the use of simple instruments for monitoring plant performance. 相似文献
9.
Kristijan Krekić 《国际可持续能源杂志》2019,38(5):486-492
The combination of solid and liquid sorption media for thermal energy storage has been explored in order to improve heat flow as well as storage capacity with respect to the incomplete space-filling of closely packed solid sorbents. Three scenarios were elucidated from which in two cases the liquid/solid combinations perform worse than the neat liquid or solid and a third scenario where the combination performs better than the separate sorbents. We identified a mixture of zeolite 13XBF with tripropylene glycol as an example for such a superior combination showing a similar adsorption curve over time as the pure zeolite or glycol. After complete saturation of the zeolite in the mixture, glycol continues to absorb water, thereby increasing the overall capacity of the system. We identified a low direct attractive interaction (dipolar and dispersive) of the liquid sorbent (tripropylene glycol) with the solid sorbent (zeolite 13XBF) as a prerequisite for improved performance. 相似文献
10.
Energy performance of a hybrid space-cooling system in an office building using SSPCM thermal storage and night ventilation 总被引:1,自引:0,他引:1
Thermal performance of a hybrid space-cooling system with night ventilation and thermal storage using shape-stabilized phase change material (SSPCM) is investigated numerically. A south-facing room of an office building in Beijing is analyzed, which includes SSPCM plates as the inner linings of walls and the ceiling. Natural cool energy is charged to SSPCM plates by night ventilation with air change per hour (ACH) of 40 h−1 and is discharged to room environment during daytime. Additional cool-supply is provided by an active system during office hours (8:00-18:00) necessary to keep the maximum indoor air temperature below 28 °C. Unsteady simulation is carried out using a verified enthalpy model, with a time period covering the whole summer season. The results indicate that the thermal-storage effect of SSPCM plates combined with night ventilation could improve the indoor thermal-comfort level and save 76% of daytime cooling energy consumption (compared with the case without SSPCM and night ventilation) in summer in Beijing. The electrical COPs of night ventilation (the reduced cooling energy divided by fan power) are 7.5 and 6.5 for cases with and without SSPCM, respectively. 相似文献
11.
Karin Willquist Valentine Nkongendem Nkemka Helena Svensson Sudhanshu Pawar Mattias Ljunggren Hans Karlsson Marika Murto Christian Hulteberg Ed W.J. van Niel Gunnar Liden 《International Journal of Hydrogen Energy》2012
A biohythane process based on wheat straw including: i) pretreatment, ii) H2 production using Caldicellulosiruptor saccharolyticus, iii) CH4 production using an undefined consortium, and iv) gas upgrading using an amine solution, was assessed through process modelling including cost and energy analysis. According to simulations, a biohythane gas with the composition 46–57% H2, 43–54% CH4 and 0.4% CO2, could be produced at high production rates (2.8–6.1 L/L/d), with 93% chemical oxygen demand (COD) reduction, and a net energy yield of 7.4–7.7 kJ/g dry straw. The model was calibrated and verified using experimental data from dark fermentation (DF) of wheat straw hydrolysate, and anaerobic digestion of DF effluent. In addition, the effect of gas recirculation was investigated by both wet experiments and simulation. Sparging improved H2 productivities and yields, but negatively affected the net energy gain and cost of the overall process. 相似文献
12.
A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H2O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m2 vacuum tube solar collector, a 4.5 kW LiBr/H2O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m2 Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m2 (between 11 and 13.30 h) and ambient temperature of 24 °C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 °C, demonstrating its potential use in cooling domestic scale buildings. 相似文献
13.
In this paper, a comprehensive numerical model was developed by coupling Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) for simulating the energy conversion process in the linear Fresnel reflector (LFR) with a Trapezoidal Cavity Receiver (TCR). Based on the model, firstly, the optical performance of a typical LFR was studied, followed by analyzing its heat transfer characteristics and thermal performance at various conditions. Then, the effects of key parameters were investigated. Finally, a LFR prototype was simulated to illustrate the application of the model. The results indicate that the solar fluxes on the absorber tubes exhibit non-uniform characteristics which would result in the non-uniform temperatures. The annual optical efficiency of 60.1%–44.7% from the equator to N50° and the collector efficiency of 48.3%–72.0% for the superheating section at normal incidence can be achieved, respectively. Moreover, the heat transfer characteristic study reveals that the radiation loss from the tubes is the dominant mode and contributes around 81%–87% at typical conditions. Parameter studies indicate that the energy absorbed by the glass which influences the heat loss obviously should be considered in the heat loss study of TCR. And the heat loss from the tubes increases rapidly with the coating emissivity, so the coating with low emissivity should be recommended for the TCR. In addition, the application in the realistic LFR indicates that the present model is an exercisable and useful tool for the LFR. 相似文献