首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the material 2,3,10,11-tetrabutyl-1,4,9,12-tetraphenyl-diindeno[1,2,3-cd:1′,2′,3′-lm] perylene (Bu4-Ph4-DIP) as alternative green donor for bulk heterojunction small molecule organic solar cells (SMOSC). It is shown that Bu4-Ph4-DIP exhibits suitable absorption characteristics to be a potential material to fill the absorption gap between the commonly used standard absorbers ZnPc and C60.Devices with bulk heterojunctions of Bu4-Ph4-DIP:C60 display very high open circuit voltages of 0.99 V, high fill factors of up to 57%, and experiments yield promising efficiencies of η>2%. Such green-blue absorbing SMOSC are characterized by current voltage and external quantum efficiency measurements, and material properties are studied. It is shown that the devices are responsive to substrate heating, and that different donor-acceptor mixing ratios can increase device performance. Possible influences of mixing ratio and heating on device morphology and electrical properties are discussed.  相似文献   

2.
A novel fullerene derivative with an N-hexylphenothiazine moiety, PTZ-C60, was synthesized and characterized. The new synthesized fullerene showed good solubility in common organic solvents such as toluene, chlorobenzene and 1, 2 dichlorobenzene. The synthetic product PTZ-C60 was characterized by 1H and 13C NMR, FT-IR and UV-vis spectroscopy. Photovoltaic devices were fabricated using the new fullerene derivative as the electron acceptor and P3HT as the electron donor. The configuration of the device was as follows: ITO/PEDOT:PSS/active layer/LiF/Al. The weight ratios of the electron donor to the acceptor in the active layer were 1:0.5, 1:0.7, and 1:1. The open-circuit voltage (Voc) of the fabricated devices was found to be higher than that of devices based on C60 because the LUMO energy level of the new fullerene derivative was higher than that of C60. Further, the power conversion efficiency (PCE) of these devices was observed to be high when annealing was carried out at 150 °C for 5 min and the thickness of the active layer was 80 nm. The maximum Voc, short-circuit current density, and PCE of the best device were 0.608 V, 4.393 mA/cm2, and 1.29%, respectively.  相似文献   

3.
Electrochemical copolymerization of 4,4′-di(N-carbazoyl)biphenyl (CBP) with 2,2′-bithiophene (BT) is carried out in acetonitrile (ACN)/dichloromethane (DCM) (1:1, by volume) solution containing sodium perchlorate (NaClO4) as a supporting electrolyte. Characterizations of the resulting copolymer P(CBP-co-BT) are performed by cyclic voltammetry (CV), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG). The P(CBP-co-BT) film has distinct electrochromic properties and exhibits four different colors (orange yellow, blue, yellowish green and greenish blue) under various potentials. Maximum contrast (ΔT%) and response time of the copolymer film are measured as 51.6% and 0.94 s at 667 nm. An electrochromic device (ECD) based on P(CBP-co-BT) and poly(3,4-ethylenedioxythiophene) (PEDOT) is constructed and characterized. The optical contrast (ΔT%) at 700 nm is found to be 28.6% and the response time is measured as 0.47 s. The coloration efficiency (CE) of the device is calculated to be 234 cm2 C−1 at 700 nm. An ECD also has good optical memories and redox stability.  相似文献   

4.
Carbons containing nitrogen (C-N composites) were derived from three commercial organic compounds, poly(vinylpyrrolidone) (PVP), polyacrylamide (PAA), and trimethylolmelamine (TMM) using the MgO template method. The C-N composites formed in nitrogen at 700-1000 °C had nitrogen content, WN, of 3-23 mass% and the specific surface area by N2 adsorption, SBET, of 60-2000 m2 g−1 without activation. Generally high nitrogen content of the starting compound led to larger WN, but WN was not proportional to the N/C mole ratio in the compounds. The value of SBET strongly depended on the compound: SBET (PVP) > SBET (PAA) ? SBET (TMM). There was a tendency for WN to decrease with increasing SBET. The capacitance measured in 1 mol dm−3 H2SO4 by cyclic voltammetry, CM in F g−1, suggested that both WN and SBET are influential in gaining large CM. For the composites with WN > 5 mass%, the capacitance normalized by SBET, CA = CM/SBET, was 0.17-0.65 F m−2, which was larger than the electric double layer capacitance (0.05-0.15 F m−2), indicating that the pseudo-capacitance contributes significantly to CM. The value of CA increased with increasing WN, but a correlation between CA and particular nitrogen species on the surface measured by XPS was obscure. It was suggested that the large CA is not simply explained by redox reactions of the surface functional groups. The composite derived from PAA at 900 °C showed 234 F g−1 at 2 mV s−1 and 181 F g−1 at 100 mV s−1 with acceptable yield of the composite.  相似文献   

5.
A Laves-phase forming Fe–Cr alloy was evaluated as interconnects for solid oxide fuel cells (SOFCs) in reducing atmosphere (in H2-H2O). The oxide scale growth was compared between Laves-phase forming alloy and typical stainless steel (SUS430). The oxide scale growth rates were decreased in the Laves-phase forming alloy, and the area-specific resistance (ASR) of oxidized Laves-phase forming alloy showed the lower values than that of SUS430. The temperature dependence of 1/ASR for the oxidized alloy was different between Laves-phase forming alloy and SUS430. The oxygen diffusivity in the oxide scale was also evaluated by the stable isotope oxygen (18O2) diffusion in the scale. The chemical diffusion coefficients of isotope oxygen in the oxide scale showed the smaller value for the Laves-phase forming alloy (D = 7.0 × 10−13 cm2 s−1) than that for SUS430 (D = 4.6 × 10−12 cm2 s−1) at 1073 K. A relatively high diffusivity of oxygen was estimated in the Mn–Cr spinel oxide on the top surface of oxide scales. Inward diffusion of oxygen and outward diffusion of cation in the oxide scale were discussed to consider the oxide scale growth mechanism.  相似文献   

6.
For the performances of solid alkaline fuel cells (SAFCs) using anion-exchange membranes (AEMs), anion-exchange membranes were prepared via chloromethylation and amination of polysulfone and membrane-electrode assemblies (MEAs) were fabricated using the AEMs as an electrolyte, the ionomer binder prepared by the AEMs and Pt/C and Ag/C electrocatalysts as an anode and a cathode, respectively. Anion-exchange membranes were aminated by a mixing amine agent of trimethylamine (TMA) as a monoamine and various diamines such as N,N,N′,N′-tetramethylmethanediamine (TMMDA), N,N,N′,N′-tetramethylethylenediamine (TMEDA), N,N,N′,N′-tetramethyl-1,3-propandiamine (TMPDA), N,N,N′,N′-tetramethyl-1,4-butanediamine (TMBDA) and N,N,N′,N′-tetramethyl-1,6-hexanediamine (TMHDA). Amination using various diamines enabled to investigate the effect of the length of alkyl chain of the diamines on membrane properties such as ion conductivity and thermal characteristics. The AEMs aminated by the amination agent of mixing TMA and TMHDA (with longer alkyl chain) showed better hydroxyl ion conductivity and thermal stability than those aminated by a diamine. The H2/air SAFC performance of the MEA with 0.5 mg cm−2 Pt/C at the anode and the cathode, respectively, was comparable to one with 0.5 mg cm−2 Pt/C at the anode and 2.0 mg cm−2 Ag/C at the cathode, i.e., approximately 28–30 mW cm−2 of the peak power density range.  相似文献   

7.
Solar cells based on nanoporous TiO2 films with an inverted structure of indium tin oxide (ITO)/TiO2/copper phthalocyanine (CuPc):fullerene (C60)/CuPc/poly(3,4-oxyethyleneoxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/Au were fabricated. The best overall photovoltaic performance undergoing a series of device optimization was achieved with the device of ITO/dense TiO2 (30 nm)/nanoporous TiO2 (130 nm)/C60:CuPc (1:6 weight) (20 nm)/CuPc (20 nm)/PEDOT:PSS (50 nm)/Au (30 nm). The device using the nanoporous TiO2 films has better photovoltaic properties compared to those using dense TiO2 films. Higher photovoltaic performances were obtained by introducing a coevaporated layer of C60:CuPc between TiO2 and CuPc. The stability of inverted structure was better than that of the normal device, which gives a promising way for fabrication of solar cells with improved stability.  相似文献   

8.
Small molecule organic solar cell with an optimized hybrid planar-mixed molecular heterojunction (PM-HJ) structure of indium tin oxide (ITO)/ poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) doped with 4 wt% sorbitol/ pentacene (2 nm)/ copper phthalocyanine (CuPc) (10 nm)/ CuPc: C60 mixed (20 nm)/ fullerene (C60) (20 nm)/ bathocuproine (BCP) (10 nm)/Al was fabricated. PEDOT: PSS layer doped with 4 wt% sorbitol and pentacene layer were used as interlayers between the ITO anode and CuPc layer to help the hole transport. And then the short-circuit current (Jsc) of solar cell was enhanced by inserting both the PEDOT: PSS (4 wt% sorbitol) and the pentacene, resulting in a 400% enhancement in power conversion efficiency (PCE). The maximum PCE of 3.9% was obtained under 1sun standard AM1.5G solar illumination of 100 mW/cm2.  相似文献   

9.
In this paper, the stability of small-molecule organic solar cells based on copper phthalocyanine (CuPc) and fullerene (C60) is investigated. The use of silver instead of aluminum as the metal electrode in these solar cells, with smaller grain size and grain boundaries as well as with more uniform grain size distribution in the film, results in significant improvement in the lifetime of the devices. The substantial role of silver in the protection of the cells against permeation of oxygen and/or water molecules into the organic thin films is confirmed. Substitution of a thin buffer layer (70 Å) of bathophenanthroline (Bphen) for bathocuproine (BCP), sandwiched between C60 and the cathode, makes considerable progress in the lifetime of the device.  相似文献   

10.
Fe3O4 supported on cubic yttria-stabilized zirconia (Fe3O4/c-YSZ) is proposed as a promising redox material for the production of hydrogen from water via a thermochemical two-step water-splitting cycle. In this study, the evolution of oxygen and hydrogen during the cyclic reaction was examined using Fe3O4/c-YSZ particles in order to demonstrate reproducible and stoichometric oxygen/hydrogen production through a repeatable two-step reaction. Subsequently, a ceramic foam device coated with Fe3O4 and c-YSZ particles was prepared and examined as a thermochemical water-splitting device in a directly irradiated receiver/reactor hydrogen production system. The Fe3O4/c-YSZ system formed a Fe-containing YSZ (Fe-YSZ) by high-temperature reaction between Fe3O4 and the c-YSZ support at 1400 °C in an inert atmosphere. The reaction mechanism of the two-step water-splitting cycle is associated with the redox transition of Fe2+–Fe3+ ions in the c-YSZ lattice. The Fe-YSZ particles exhibit good reproducibility for reaction with a hydrogen/oxygen ratio of approximately 2.0 throughout repeated cycles. The foam device coated with Fe-YSZ particles was also successful for continual hydrogen production through 32 repeated cycles. A 20–27% ferrite conversion was obtained using 10.5 wt% Fe3O4 loading over an irradiation period of 60 min.  相似文献   

11.
The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C12-PSV:C60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 18O2 isotopic labelling was employed in conjunction with time-of-flight secondary ion mass spectrometry. A comparison was made between devices being kept in the dark and devices that had been subjected to illumination under simulated sunlight (1000 W m−2, AM1.5) and this demonstrated that oxygen-containing species were generated throughout the active layer with the largest concentration towards the aluminium electrode. For devices that had been kept in the dark oxygen species were only observed at the immediate interface between the aluminium and the organic layer. The isotopic labelling allowed us to demonstrate that the oxygen comes from the atmosphere and diffuses through the aluminium electrode and into the device.  相似文献   

12.
An efficient single layer organic solar cell based on plain buckminsterfulerence (C60) has been fabricated. By inserting a very thin N,N′-bis(naphthalene-1-yl)-N,N′-bis(phenyl)benzidine layer between the indium tin oxide and single C60 active layer, a short-circuit current of 1.98 mA/cm2 and an open-circuit voltage of 0.52 V are obtained under 100 mW/cm2 AM1.5G simulated illumination. The highest power conversion efficiency of 0.414% based on plain C60 is thus demonstrated, which is the first step to realize an environment-friendly energy source.  相似文献   

13.
Thin-film solid oxide fuel cells (SOFCs) were fabricated with both Pt and mixed conducting oxide cathodes using sputtering, lithography, and etching. Each device consists of a 75–150 nm thick yttria-stabilized zirconia (YSZ) electrolyte, a 40–80 nm porous Pt anode, and a cathode of either 15–150 nm dense La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) or 130 nm porous Pt. Maximum powers produced by the cells are found to increase with temperature with activation energies of 0.94–1.09 eV. At 500 °C, power densities of 90 and 60 mW cm−2 are observed with Pt and LSCF cathodes, respectively, although in some conditions LSCF outperforms Pt. Several device types were fabricated to systematically investigate electrical properties of components of these fuel cells. Micro-fabricated YSZ structures contacted on opposite edges by Pt electrodes were used to study temperature-dependent in-plane conductivity of YSZ as a function of lateral size and top and bottom interfaces. Si/Si3N4/Pt and Si/Si3N4/Au capacitor structures are fabricated and found to explain certain features observed in impedance spectra of in-plane and fuel cell devices containing silicon nitride layers. The results are of relevance to micro-scale energy conversion devices for portable applications.  相似文献   

14.
Ambient-temperature ionic liquids (IL) based on bis(fluorosulfonyl)imide (FSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) or N-methyl-N-propylpyrrolidinium (Py13) as cations have been investigated with natural graphite anode and LiFePO4 cathode in lithium cells. The electrochemical performance was compared to the conventional solvent EC/DEC with 1 M LiPF6 or 1 M LiFSI. The ionic liquid showed lower first coulombic efficiency (CE) at 80% compared to EC–DEC at 93%. The impedance spectroscopy measurements showed higher resistance of the diffusion part and it increases in the following order: EC–DEC–LiFSI < EC–DEC–LiPF6 < Py13(FSI)–LiFSIE = MI(FSI)–LiFSI. On the cathode side, the lower reversible capacity at 143 mAh g−1 was obtained with Py13(FSI)–LiFSI; however, a comparable reversible capacity was found in EC–DEC and EMI(FSI)–LiFSI. The high viscosity of the ionic liquids suggests that different conditions such as vacuum and 60 °C are needed to improve impregnation of IL in the electrodes. With these conditions, the reversible capacity improved to 160 mAh g−1 at C/24. The high-rate capability of LiFePO4 was evaluated in polymer–IL and compared to the pure IL cells. The reversible capacity at C/10 decreased from 155 to only 126 mAh g−1 when the polymer was present.  相似文献   

15.
Synthesized yttrium aluminum garnet (YAG) sol was coated on the surface of the LiCoO2 cathode particles by an in situ sol–gel process, followed by calcination at 923 K for 10 h in air. Based on XRD, TEM, and ESCA data, a compact YAG kernel with an average thickness of ∼20 nm was formed on the surface of the core LiCoO2 particles, which ranged from ∼90 to 120 nm in size. The charge–discharge cycling studies for the coated materials suggest that 0.3 wt.% YAG-coated LiCoO2 heated at 923 K for 10 h in air, delivered a discharge capacity of 167 mAh g−1 and a cycle stability of about 164 cycles with a fading rate of 0.2 mAh cycle−1 at a 0.2C-rate between 2.75 and 4.40 V vs. Li/Li+. The differential capacity plots revealed that impedance growth was slower for YAG surface treated LiCoO2, when cells were charged at 4.40 V. DSC results exemplified that the exothermic peak at ∼468 K corresponded to the release of much less oxygen and greater thermal-stability.  相似文献   

16.
Porous nanostructured LiFePO4 powder with a narrow particle size distribution (100–300 nm) for high rate lithium-ion battery cathode application was obtained using an ethanol based sol–gel route employing lauric acid as a surfactant. The synthesized LiFePO4 powders comprised of agglomerates of crystallites <65 nm in diameter exhibiting a specific surface area ranging from 8 m2 g−1 to 36 m2 g−1 depending on the absence or presence of the surfactant. The LiFePO4 obtained using lauric acid resulted in a specific capacity of 123 mAh g−1 and 157 mAh g−1 at discharge rates of 10C and 1C with less than 0.08% fade per cycle, respectively. Structural and microstructural characterization were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray (EDX) analysis while electronic conductivity and specific surface area were determined using four-point probe and N2 adsorption techniques.  相似文献   

17.
Nano-sized LiMn2O4 spinel with well crystallized homogeneous particles (60 nm) is synthesized by a resorcinol-formaldehyde route. Micro-sized LiMn2O4 spinel with micrometric particles (1 μm) is prepared by a conventional solid-state reaction. These two samples are characterized by XRD, SEM, TEM, BET, and electrochemical methods. At current rate of 0.2C (1C = 148 mA g−1), a discharge capacity of 136 mAh g−1 is obtained on the nano-sized LiMn2O4, which is higher than that of micro-sized one (103 mAh g−1). Furthermore, compared to the micro-sized sample, nano-sized LiMn2O4 shows much better rate capability, i.e. a capacity of 85 mAh g−1, 63% of that at 0.2C, is realized at 60C. The excellent high rate performance of nano-sized LiMn2O4 spinel may be attributed to its impurity-free nano-sized particles, higher surface area and well crystalline. The outstanding electrochemical performances demonstrate that the nano-sized LiMn2O4 spinel will be the promising cathode materials for high power lithium-ion batteries used in hybrid and electric vehicles.  相似文献   

18.
Quasi-solid-state dye-sensitized solar cells (DSC) are fabricated using tetradodecylammonium bromide as a low molecular mass organogelator (LMOG) to form gel electrolyte with a high solution-to-gel transition temperature (TSG) of 75 °C to hinder flow and volatilization of the liquid. The steady-state voltammograms reveal that the diffusion of the I3 and I in the gel electrolyte is hindered by the self-assembled network of the gel. An increased interfacial exchange current density (j0) of 4.95 × 10−8 A cm−2 and a decreased electron recombination lifetime (τ) of 117 ms reveal an increased electron recombination at the dyed TiO2 photoelectrode/electrolyte interface in the DSC after gelation. The results of the accelerated aging tests show that the gel electrolyte based dye-sensitized solar cell can retain over 93% of its initial photoelectric conversion efficiency value after successive heating at 60 °C for 1000 h, and device degradation is negligible after one sun light soaking with UV cutoff filter for 1000 h.  相似文献   

19.
An indium tin oxide/titanium oxide/[6,6]-phenyl C61 butyric acid methyl ester:regioregular poly(3-hexylthiophene)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au type organic solar cell (ITO/TiOx/PCBM:P3HT/PEDOT:PSS/Au) with 1 cm2 active area, which is called “inverted-type solar cell”, was developed using an ITO/amorphous titanium oxide (TiOx) electrode prepared by a sol-gel technique instead of a low functional electrode such as Al. The power conversion efficiency (η) of 2.47% was obtained by irradiating AM 1.5G-100 mW cm−2 simulated sunlight. We found that a photoconduction of TiOx by irradiating UV light containing slightly in the simulated sunlight was required to drive this solar cell. The device durability in an ambient atmosphere was maintained for more than 20 h under continuous light irradiation. Further, when the air-stable device was covered by a glass plate with a water getter sheet which was coated by an epoxy-UV resin as sealing material, the durability was still higher and over 96% of relative efficiency was observed even after continuous light irradiation for 120 h.  相似文献   

20.
In this paper, we report the synthesis, chemical stability and electrical properties of three new Ta-substituted double perovskite-type Ba2Ca2/3Nb4/3O6 (BCN). The powder X-ray diffraction (PXRD) confirms the formation of double perovskite-like structure Ba2(Ca0.75Nb0.59Ta0.66)O6−δ, Ba2(Ca0.75Nb0.66Ta0.59)O6−δ and Ba2(Ca0.79Nb0.66Ta0.55)O6−δ. The PXRD of CO2 treated (800 °C; 7 days) and water boiled (7 days) samples remain the same as the as-prepared samples, suggesting a long-term structural stability against the chemical reaction. The electrical conductivity of the investigated perovskites was found to vary in different atmospheres (air, dry N2, wet N2, H2 and D2O + N2). The AC impedance investigations show bulk, grain-boundary and electrode contributions in the frequency range of 0.01 Hz to 7 MHz. Below 600 °C, the bulk conductivity in wet H2 and wet N2 was higher than in air, dry H2 and dry N2. However, an opposite trend was observed at high temperatures, which may be ascribed to p-type electronic conduction. The electrical conductivity of the investigated perovskites was decreased in D2O + N2 compared to that of H2O + N2 atmosphere. This clearly shows that the investigated Ta-doped BCN compounds exhibit proton conduction in wet atmosphere which was found to be consistent with water uptake. The water uptake was further confirmed by thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) characterization. Among the samples investigated, Ba2(Ca0.79Nb0.66Ta0.55)O6−δ shows the highest proton conductivity of 4.8 × 10−4 S cm−1 (at 1 MHz) at 400 °C in wet (3% H2O) N2 or H2, which is about an order of magnitude higher than the recently reported 1% Ca-doped LaNbO4 at the same atmosphere and at 10 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号