首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the proposed National Mission on Biodiesel in India, we have undertaken studies on the oxidative stability of biodiesel synthesized from tree borne non-edible oil seeds jatropha. Neat jatropha biodiesel exhibited oxidation stability of 3.95 h and research was conducted to investigate the influence of natural and synthetic antioxidants on the oxidation stability of jatropha methyl ester. Antioxidants namely α-tocopherol, tert-butylated hydroxytoluene, tert-butylated phenol derivative, octylated butylated diphenyl amine, and tert-butylhydroxquinone were doped to improve the oxidation stability. It was found that both types of antioxidants showed beneficial effects in increasing the oxidation stability of jatropha methyl ester, but comparatively, the synthetic antioxidants were found to be more effective.  相似文献   

2.
Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 °C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30–50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification.  相似文献   

3.
There is a need to seek non-conventional seed oil sources for biodiesel production due to issues such as supply and availability as well as food versus fuel. In this context, Milo (Thespesia populnea L.) seed oil was investigated for the first time as a potential non-conventional feedstock for preparation of biodiesel. This is also the first report of a biodiesel fuel produced from a feedstock containing cyclic fatty acids as T. populnea contains 8,9-methylene-8-heptadecenoic (malvalic) and smaller amounts of two cyclopropane fatty acids besides greater amounts of linoleic, oleic and palmitic acids. The crude oil extracted from T. populnea seed was transesterified under standard conditions with sodium methoxide as catalyst. Biodiesel derived from T. populnea seed oil exhibited fuel properties of density 880 kg m−3, kinematic viscosity 4.25 mm2/s; cetane number 59.8; flash point 176 °C; cloud point 9 °C; pour point 8 °C; cold filter plugging point 9 °C; sulfur content 11 mg kg−1; water content 150 mg kg−1; ash content 15 mg kg−1; and acid value as KOH 250 mg kg−1. The oxidative stability of 2.91 h would require the use of antioxidants to meet specifications in standards. Generally, most results compared well with ASTM D6751 and EN 14214 specifications.  相似文献   

4.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

5.
The present paper reports the results of the study of the effect of metal contaminants on the storage stability of Jatropha curcas biodiesel (JCB) with and without antioxidants. Taking 1,2,3 -Trihydroxybenzene/Pyrogallol (PY) as the most effective antioxidant based on the earlier work of the authors, JCB was mixed with different transition metals – Fe, Ni, Mn, Co and Cu in different concentrations. Induction period (IP) was measured using Rancimat method (EN 14112) as the stability parameter. Based on results, several correlations were developed for assessing the storage stability in terms of IP as a function of antioxidant, metal concentration and storage time. For the purpose of design of experiment, response surface methodology (RSM) has been used. From the experiments it is found that if metal concentration is 0 then, 200 g m−3 of PY is sufficient to make biodiesel stable for 6 months. If metal (Fe) concentration is 2 g m−3 or more, then 800 g m−3 PY is sufficient to make biodiesel stable for 5.5 months. The value of storage time for Ni, Mn, Co and Cu contaminated JCB is found as 3.62, 3.24, 2.76 and 2.07 months respectively if metal and antioxidants concentration is same in all the cases.The models developed by RSM shall be highly useful for predicting the optimum antioxidant concentration to achieve maximum storage stability of JCB as well as biodiesel from other resources under the conditions set for 3 factors (antioxidant concentration, metal concentration and time).  相似文献   

6.
This paper evaluates GHG emissions and energy balances (i.e. net energy value (NEV), net renewable energy value (NREV) and net energy ratio (NER)) of jatropha biodiesel as an alternative fuel in Tanzania by using life cycle assessment (LCA) approach. The functional unit (FU) was defined as 1 tonne (t) of combusted jatropha biodiesel. The findings of the study prove wrong the notion that biofuels are carbon neutral, thus can mitigate climate change. A net GHG equivalent emission of about 848 kg t−1 was observed. The processes which account significantly to GHG emissions are the end use of biodiesel (about 82%) followed by farming of jatropha for about 13%. Sensitivity analysis indicates that replacing diesel with biodiesel in irrigation of jatropha farms decreases the net GHG emissions by 7.7% while avoiding irrigation may reduce net GHG emissions by 12%. About 22.0 GJ of energy is consumed to produce 1 t of biodiesel. Biodiesel conversion found to be a major energy consuming process (about 64.7%) followed by jatropha farming for about 30.4% of total energy. The NEV is 19.2 GJ t−1, indicating significant energy gain of jatropha biodiesel. The NREV is 23.1 GJ t−1 while NER is 2.3; the two values indicate that large amount of fossil energy is used to produce biodiesel. The results of the study are meant to inform stakeholders and policy makers in the bioenergy sector.  相似文献   

7.
An economic and environmentally friendly catalyst derived from waste freshwater mussel shell (FMS) was prepared by a calcination-impregnation-activation method, and it was applied in transesterification of Chinese tallow oil. The as-prepared catalyst exhibits a “honeycomb” -like structure with a specific surface area of 23.2 m2 g−1. The newly formed CaO crystals are major active phase of the catalyst. The optimal calcination and activity temperature are 900 °C and 600 °C, respectively. When the reaction is carried out at 70 °C with a methanol/oil molar ratio of 12:1, a catalyst concentration of 5% and a reaction time of 1.5 h, the FMS-catalyst is active for 7 reaction cycles, with the biodiesel yield above 90%. The experimental results indicate that the FMS can be used as an economic catalyst for the biodiesel production.  相似文献   

8.
Biodiesel consists of long chain fatty acid esters derived from feed stocks such as vegetable oils, animal fats and used frying oil, etc. which may contain more or less unsaturated fatty acids which are prone to oxidation accelerated by exposure to air during storage and at high temperature may yield polymerized compounds. Auto oxidation of biodiesel can cause degradation of fuel quality by affecting the stability parameters. Biodiesel stability includes oxidation, storage and thermal stability. Oxidation instability can led to the formation of oxidation products like aldehydes, alcohols, shorter chain carboxylic acids, insolubles, gum and sediment in the biodiesel. Thermal instability is concerned with the increased rate of oxidation at higher temperature which in turn, increases the weight of oil and fat due to the formation of insolubles. Storage stability is the ability of liquid fuel to resist change in its physical and chemical characteristics brought about by its interaction with its environment and may be affected by interaction with contaminants, light, factors causing sediment formation, changes in color and other changes that reduce the clarity of the fuel. These fuel instabilities give rise to formation of undesirable substances in biodiesel and its blends beyond acceptable quantities as per specifications and when such fuel is used in engine, it impairs the engine performance due to fuel filter plugging, injector fouling, deposit formation in engine combustion chamber and various components of the fuel system.The present review attempts to cover the different types of fuel stabilities, mechanism of occurrence and correlations/equations developed to investigate the impact of various stability parameters on the stability of the fuel. A review of the use of different types of natural and synthetic antioxidants has also been presented which indicates that natural antioxidants, being very sensitive to biodiesel production techniques and the distillation processes have varying impacts on fuel stability and available literature is very much scarce. The work on the use of synthetic antioxidants on the stability of biodiesel (both distilled and undistilled) from various resources has indicated that out of various 8 synthetic antioxidants studied so far only 3 antioxidants have been found to increase the fuel stability significantly. However, effectiveness of these antioxidants is in the order of TBHQ > PY > PG.  相似文献   

9.
According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. European biodiesel standard EN-14214 calls for determining oxidation stability at 110 °C with a minimum induction time of 6 h by the Rancimat method (EN-14112). Neat Jatropha biodiesel (JBD) exhibited oxidation stability of 3.95 h and research was conducted to investigate influence of presence of transition metals, likely to be present in the metallurgy of storage tanks and barrels, on oxidation stability of Jatropha methyl ester. It was found that influence of metal was detrimental to oxidation stability and catalytic. Even small concentrations of metal contaminants showed nearly same influence on oxidation stability as large amounts. Copper showed strongest detrimental and catalytic effect. The dependence of the oxidation stability on the type of metal showed that long-term storage tests in different types of metal containers for examining the influence of container material on oxidation stability of biodiesel may be replaced by significantly faster Rancimat test serving as an accelerated storage test.  相似文献   

10.
Fluidized bed flash pyrolysis experiments have been conducted on a sample of jatropha oil cake to determine particularly the effects of particle size, pyrolysis temperature and nitrogen gas flow rate on the pyrolysis yields. The particle size, nitrogen gas flow rate and temperature of jatropha oil cake were varied from 0.3 to 1.18 mm, 1.25 to 2.4 m3/h and 350 to 550 °C. The maximum oil yield of 64.25 wt% was obtained at a nitrogen gas flow rate of 1.75 m3/h, particle size of 0.7–1.0 mm and pyrolysis temperature of 500 °C. The calorific value of pyrolysis oil was found to be 19.66 MJ/kg. The pyrolysis gas can be used as a gaseous fuel.  相似文献   

11.
This article assesses the current technical and economic potential of three bioenergy production systems (cassava ethanol, jatropha oil and fuelwood) in semi-arid and arid regions of eight sub-Saharan African countries. The results indicate that the availability of land for energy production ranges from 2% (1.3 Mha) of the total semi-arid and arid area in South Africa to 21% (12 Mha) in Botswana. Land availability for bioenergy production is restricted mainly by agricultural land use, but also by steep slopes and biodiversity protection. The current total technical potential for the semi-arid and arid regions of the eight countries is calculated to be approximately 300 PJ y−1 for cassava ethanol production, 600 PJ y−1 for jatropha biodiesel or 4000 PJ y−1 for fuelwood. The analysis of economic potentials shows that in many semi-arid regions, cassava ethanol, jatropha oil and fuelwood can compete economically with the reference energy sources. However, fuelwood, jatropha oil, and cassava ethanol production costs in most arid regions of sub-Saharan Africa are often above average national market prices of gasoline, diesel, and fuelwood. Nevertheless, for example, in arid Kenya 270 PJ could be produced annually with fuelwood at production costs of less than 3 US$ GJ−1. Despite high production costs, it is important to investigate and invest in sustainable bioenergy production in semi-arid and arid regions of sub-Saharan Africa because of its potential to drive rural economic and social development.  相似文献   

12.
In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 24 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 °C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production.  相似文献   

13.
Biodiesels jatropha and pongamia synthesized from their respective non-edible seed oils, and PBD (palm biodiesel) synthesized from edible oil were blended with different weight ratios to examine the influence on the OS (oxidation stability). Dependence of the OS on esters of fatty acid composition was also examined. Good correlation between the OS and PAME (palmitic acid methyl ester) was obtained. A correlation between the OS and X (total unsaturated fatty acid methyl ester) was also obtained. Using these correlations, OS of different biodiesel blends can be determined.  相似文献   

14.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

15.
Lithium impregnated calcium oxide has been prepared by wet impregnation method in nano particle form as supported by powder X-ray diffraction and transmission electron microscopy. Basic strength of the same was measured by Hammett indicators. Calcium oxide impregnated with 1.75 wt% of lithium was used as solid catalyst for the transesterification karanja and jatropha oil, containing 3.4 and 8.3 wt% of free fatty acids, respectively. The reaction parameters, viz., reaction temperature, alcohol to oil molar ratio, free fatty acid contents, amount of catalyst and amount of impregnated lithium ion in calcium oxide support, have been studied to establish the most suitable condition for the transesterification reaction. The complete transesterification of karanja and jatropha oils was achieved in 1 and 2 h, respectively, at 65 °C, utilizing 12:1 molar ratio of methanol to oil and 5 wt% (catalyst/oil, w/w) of catalyst. Few physicochemical properties of the prepared biodiesel samples have been studied and compared with standard values.  相似文献   

16.
《Biomass & bioenergy》2007,31(8):569-575
Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the three important reaction variables—methanol quantity (M), acid concentration (C) and reaction time (T) for reduction of free fatty acid (FFA) content of the oil to around 1% as compared to methanol quantity (M′) and reaction time (T′) and for carrying out transesterification of the pretreated oil. Using RSM, quadratic polynomial equations were obtained for predicting acid value and transesterification. Verification experiments confirmed the validity of both the predicted models. The optimum combination for reducing the FFA of Jatropha curcas oil from 14% to less than 1% was found to be 1.43% v/v H2SO4 acid catalyst, 0.28 v/v methanol-to-oil ratio and 88-min reaction time at a reaction temperature of 60 °C as compared to 0.16 v/v methanol-to-pretreated oil ratio and 24 min of reaction time at a reaction temperature of 60 °C for producing biodiesel. This process gave an average yield of biodiesel more than 99%. The fuel properties of jatropha biodiesel so obtained were found to be comparable to those of diesel and confirming to the American and European standards.  相似文献   

17.
In the present work, the oxidation stabilities of oil biodiesel fuel from Jatropha curcas L were investigated by using both Rancimat and PetroOXY test method. Three types of conventional antioxidants, i.e. butylated hydroxytoluene, 6,6-di-tert-butyl-2,2-methylenedi-p-cresol, and commercialized amine, were employed and the oxidation stability effects of those additives were examined. Oxidation stability was influenced differently depending on the type of antioxidants and their concentrations. The obtained experimental data from Rancimat and PetroOXY test methods resulting in a linear correlation at various mixtures shows the potential use of PetroOXY test method for future analytical oxidation stability test. In this research, the changes in the chemical properties of fuel sample, such as: peroxide value, acid value, composition, and kinematic viscosity, obtained from the experimental work were thoroughly discussed.  相似文献   

18.
Yellow oleander (Thevetia peruviana Schum.) seed oil has been investigated to produce biodiesel. Transesterification of the oil to biodiesel was carried out in methanol by batch reaction using a heterogeneous catalyst derived from the trunk of Musa balbisiana Colla (one variety of banana plant). 96 wt.% of the oil is converted to biodiesel at 32 °C in 3 h. The wt.% composition of the biodiesel is methyl oleate 43.72, methyl palmitate 23.28, methyl linoleate 19.85, methyl stearate 10.71 and methyl arachidate 2.41. Fuel properties conform to standards set for ASTM D6751, EN 14214, BS II and BS III, and in certain aspects better. The biodiesel is free from sulfur and has exhibited a high cetane number of 61.5.  相似文献   

19.
In this study, the two most effective aromatic amine antioxidants N,N′-diphenyl-1,4-phenylenediamine (DPPD) and N-phenyl-1,4-phenylenediamine (NPPD), were used at a concentration of 2000 ppm. The impact of antioxidants on the oxidation stability, exhaust emission and engine performance of a multi-cylinder diesel engine fuelled with MB20 (20% Moringa oil methyl ester and 80% diesel fuel blend) were analysed at varying speed conditions at an interval of 500 rpm and a constant load. It was observed that, blending with diesel enhanced the oxidation stability of the moringa biodiesel by approximately 6.97 h, and the addition of DPPD and NPPD to MB20 increased the oxidation stability up to 34.5 and 18.4 h, respectively. The results also showed that the DPPD- and NPPD-treated blends reduced the NOx emission by 7.4% and 3.04%, respectively, compared to the untreated blend. However, they do have higher carbon monoxide (CO) and hydrocarbon (HC) levels and smoke opacities, but it should be noted that these emissions are still well below the diesel fuel emission level. The results show that the addition of antioxidant with MB20 also improves the engine's performance characteristics. Based on this study, MB20 blends with amine antioxidants can be used in diesel engines without any modification.  相似文献   

20.
This work describes the production of biodiesel from Jatropha curcas oil. The kernel samples provided by Embrapa-PI, were first crushed in a blender and then subjected to extraction with hexane. The oil yield was between 54.71 ± 0.47 and 64.16 ± 2.88%. The J. curcas oil was then submitted to two different kinds of degumming, first with water and second with H3PO4 to evaluate the influence of these processes in the yield of the transesterification reaction. Methyl and ethyl biodiesel prepared from the degummed oil with H3PO4 had higher conversions than those prepared with the degummed with water. Therefore, among the processes of degumming studied, H3PO4 was more suitable for the treatment of J. curcas oil. The study shows the results about oxidation stability were good, because the biodiesels methyl and ethyl biodiesel have induction period at 13.51 h and 13.03 h without antioxidant addition when submitted a Rancimat text. Such biodiesels had their physicochemical parameters defined under the specifications of ANP Resolutions n° 14/2012 (ANP- National Agency of Petroleum, Natural Gas and Biofuels from Brazil). The results showed that J. curcas cultivation in Brazil is an adequate source for biodiesel production, considering the technical standards available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号