首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat transfer characteristics and flow behavior in a rectangular passage with two opposite 45° skewed ribs for turbine rotor blade have been investigated for Reynolds numbers from 7800 to 19,000. In this blade, the spanwise coolant passage at the trailing edge region whose thickness is very thin is chosen, so the channel aspect ratio (=width/height of channel) is extremely high, 4.76. Therefore the heat transfer experiment in the high‐aspect‐ratio cooling channel was performed using thermochromic liquid crystal and thermocouples. Furthermore, the calculation of flow and heat transfer was carried out using CFD analysis code to understand the heat transfer experimental results. The enhanced heat transfer coefficients on the smooth side wall at the rib's leading end were the same level as those on the rib‐roughened walls. © 2002 Scripta Technica, Heat Trans Asian Res, 31(2): 89–104, 2002; DOI 10.1002/htj.10018  相似文献   

2.
Detailed heat transfer coefficient distributions are obtained for high aspect ratio (width/height = 12.5) duct with rib and trench enhancement features oriented normal to the coolant flow direction. A transient thermochromic liquid crystal technique has been used to experimentally measure heat transfer coefficients from which Nusselt numbers are calculated on the duct surface featuring heat transfer enhancement features. Reynolds number (calculated based on duct hydraulic diameter) ranging from 7100 to 22400 were experimentally investigated. Detailed measurements of heat transfer provided insight into the role of protruding ribs and trenches on the fluid dynamics in the duct. Experimentally obtained Nusselt numbers are normalized by Dittus-Boelter correlation for developed turbulent flow in circular duct. The triangular trenches provide heat transfer enhancement ratios up to 1.9 for low Reynolds numbers. The in-line rib configuration shows similar levels to the trench whereas staggered rib configuration provides heat transfer enhancement ratios up to 2.2 for a low Reynolds number of 7100.  相似文献   

3.
An experimental investigation is carried out to study fluid flow and heat transfer characteristics on the endwall fitted with arrays ( 7×7 ) of short rectangular plate fins of different pattern (co-angular and zigzag) for different pitch ratio. Experiments were conducted in a rectangular duct of 50 mm height for an air flow of Reynolds number ranged from 18750 to 62500 based on the equivalent diameter and air velocity of the duct. Infrared image analysis technique was employed to make clear the characteristics of local heat transfer coefficients on fin base, endwall and overall surface. Flow pattern around the short rectangular plates were visualized by inducing fluorescent dye in a water channel and longitudinal vortices were observed. Increasing the distance between plates in flow direction causes heat transfer enhancement for co-angular pattern, while decreasing the distance causes heat transfer enhancement for zigzag pattern. Zigzag pattern with pitch ratio 2 is found to be more effective in heat transfer enhancement than any other cases investigated.  相似文献   

4.
Experiments were conducted to investigate the forced convective heat transfer and flow friction of turbulent airflow in a rectangular duct with cross-ribs attached at the two principal walls in the Reynolds number range from 5000 to 40000. The effect of the rib cross angle (45° 60° 75° and the height (4 mm, 5 mm) of the cross-ribs on the forced convection and flow friction were tested. Non-dimensional correlations for the duct average Nusselt number and friction factor of cross-ribs duct were developed from the test data. Experiments were also conducted for the corresponding parallel ribs to compare their relative performance. The experimental results show that both of the convective heat transfer coefficient and friction factor were increased with cross-ribs, with 45°cross-ribs being the best. Compared with parallel ribs normal to the flow direction under identical flow rate and identical pumping power constraints, the cross-ribs can enhance heat transfer in the lower Reynolds number region, while i  相似文献   

5.
A numerical solution of the steady-state forced convection for air flowing through a horizontally oriented simulated printed circuit board (PCB) assembly under laminar flow condition has been developed. The considered assembly consists of a channel formed by two parallel plates. The upper plate is thermally insulated, whereas the bottom plate is attached with uniformly spaced identical electrically heated square ribs perpendicular to the mean air flow. The bottom plate is used to simulate the PCB, and the ribs with heat generation are used to simulate the electronic components. A second-order upwind scheme is adopted in the calculation and a very fine mesh density is arranged near the obstacle and the channel surface to achieve higher calculation accuracy. Four Nusselt numbers (Nu) are of particular interest in this analysis: local distribution along the rib's surfaces, mean value for individual surfaces of the rib, overall obstacle mean value, and overall PCB mean value between the central lines of two obstacles. The effect of the obstacle size and the separation between two obstacles is discussed systematically.  相似文献   

6.
Experimental work has been performed to examine the combined effects of rib-grooved turbulators on the turbulent forced convection heat transfer and friction characteristics in a rectangular duct under a uniform heat flux boundary condition. In the experiments, three types of rib-groove arrangements: rectangular-rib and triangular-groove (RR–TG), triangular-rib and rectangular-groove (TR–RG) and triangular-rib with triangular-groove (TR–TG), were examined. Measurements were carried out for the duct of one aspect ratio, AR = W/H = 20 and duct height, H = 9 mm with rib height, e = 3 mm at three pitch ratios, PR P/e = 6.6, 10 and 13.3. Experiments were conducted for the Reynolds number range of 3000 to 10,000. Influences of rib-groove arrangements on the Nusselt number and friction factor have been discussed and compared with smooth duct results under similar test conditions. Isothermal friction factors were also taken and presented. The obtained results of the smooth duct are in good agreement with the previous studies found in the literature. Experimental results also show that the duct with RR–TG arrangement provides maximum heat transfer rate and friction factor than others. On the other hand, the thermal enhancement index obtained at constant pumping power reveals that the TR–TG provides the highest values for all pitch ratios studied. Finally, correlations for the heat transfer (Nu), friction factor (f) and the enhancement index (η) have been developed as a function of pitch ratio (PR) and Reynolds number (Re).  相似文献   

7.
Experimental investigations in fluid flow and heat transfer have been carried out to study the effect of wall proximity due to flow separation around rectangular prisms. Experiments have been carried out for the Reynolds number 2.6 × 104, blockage ratios are 0.1, 0.2, 0.3, and 0.4, aspect ratios (d/c) are 1.5, 1.33, 0.667, and 0.333, with different height‐ratios and various angles of attack. The static pressure distribution has been measured on all faces of the rectangular prisms. The results have been presented in the form of pressure coefficient, drag coefficient for various height‐ratios and blockage ratios. The pressure distribution shows positive values on the front face whereas on the rear face negative values of the pressure coefficient have been observed. The drag coefficient decreases with the increase in angle of attack as the height‐ratio decreases. The heat transfer experiments have been carried out under constant heat flux conditions. Heat transfer coefficients are determined from the measured wall temperature and ambient temperature and presented in the form of a Nusselt number. Both local and average Nusselt numbers have been presented for various height‐ratios. The variation of the local Nusselt number has been shown with nondimensional distance for different angles of attack and blockage ratios. The variation of the average Nusselt number has also been shown with different angles of attack for blockage ratios. The local as well as average Nusselt number decreases as the height‐ratio decreases for all nondimensional distances and angles of attack, respectively, for rectangular prisms. Empirical correlations for the average Nusselt number have been presented for a rectangular prism as a function of the Reynolds number, Prandtl number and relevant nondimensional parameters.  相似文献   

8.
The flow behavior and heat transfer characteristics of conjugate heat transfer under mixed convection for a three-dimensional laminar flow in a rectangular channel with six protruding heat sources, mounted on the lower wall of the channel, have been studied numerically and experimentally. At higher temperatures, radiation plays an important role. This work reports the effect of radiation on conjugate mixed convection heat transfer. Air is taken as a cooling medium and is considered to be radiatively non-participating medium. The parameters considered for the study are positions (streamwise and spansise) of the heat sources, Reynolds number, emissivity of the heat sources, and the thermal conductivity of a printed circuit board (PCB) having constant fluid properties with the Prandtl number being 0.707. The Boussinesq approximation has been used. Commercial software ANSYS Fluent has been used for numerical analysis, and experiments have been carried out in a small-sized wind tunnel. The ranges of Reynolds number, emissivity, and thermal conductivity of PCB are 115–690 (corresponding inlet velocity of 0.25–1.5), 0–0.9, and 0.038–1.4 W/mK, respectively. Results indicate that the radiative heat transfer is significant at lower Reynolds number and lower thermal conductivity of PCB. The streamwise spacing of heat sources has larger influence compared to the spanwise spacing.  相似文献   

9.
This paper describes the experimental examination of the pressure drop and heat transfer of the flow in convergent and divergent ducts of rectangular cross section. The aspect ratio based on the dimensions of the large end of the duct was 0⋅1. It has been found that at a given convergent or divergent angle pressure drop decreases while heat transfer increases with increasing Reynolds number. Along a given duct of small convergent angle, pressure drop increases while heat transfer decreases along the duct. However, heat transfer may increase near the downstream end of ducts of high convergent angle. At a given Reynolds number, both pressure drop and heat transfer increase with increasing convergent angle. As for flow in divergent ducts, the effects of Reynolds number on pressure drop and heat transfer are somewhat similar to those of flow in a convergent duct. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
Numerical investigation has been performed to analyze forced convective heat transfer to supercritical water in horizontal rectangular ducts. Convective heat transfer near the critical region in the rectangular ducts is strongly influenced by large variations of thermodynamic and transport properties of supercritical fluid with gravity force, especially close to pseudocritical temperature. Fluid flow and heat transfer characteristics such as velocity, temperature, and local heat transfer coefficient with water properties distribution in the ducts are presented. Flow accelerates along the horizontal ducts because of decreased water density from heat transfer at the duct walls. Center of large flow recirculation in the duct section locates near the middle of vertical surface and additional secondary recirculation in clockwise direction appears with the increase of duct height. Local wall temperature severely varies along the inner surface of the duct section and its variation depends on aspect ratio of the duct. The heat transfer coefficient distributions along the ducts for various aspect ratios are compared with the proximity effect to the critical pressure.  相似文献   

11.
A numerical work has been conducted to examine turbulent periodic flow and heat transfer characteristics in a three dimensional square-duct with inline 60° V-shaped discrete thin ribs placed on two opposite heated walls. The isothermal-flux condition is applied only to the upper and lower duct walls while the two sidewalls are insulated, similar to internal passage cooling of gas turbine blades. The computations are based on the finite volume method with the SIMPLE algorithm for handling the pressure–velocity coupling. Air is the working fluid with the flow rate in terms of Reynolds numbers ranging from 10,000 to 25,000. The numerical result is validated with available square-rib measured data and found to agree well with measurement. The computation reveals that the ribbed duct flow is fully developed periodic flow and heat transfer profiles at about x/D = 7–11 downstream of the inlet. Effects of different rib height to duct diameter ratios, BR, on thermal characteristics for a periodic ribbed duct flow are investigated. It is found that a pair of counter-rotating vortices (P-vortex) caused by the rib can induce impingement/attachment flows on the walls leading to greater increase in heat transfer over the test duct. In addition, the rise of BR values leads to the increase in heat transfer and friction loss. The maximum thermal performance is around 1.8 for the rib with BR = 0.0725 where the heat transfer rate is about 4.0 times above the smooth duct at lower Reynolds number.  相似文献   

12.
Heat transfer in a PEMFC flow channel   总被引:2,自引:0,他引:2  
A numerical method was applied to the heat transfer performance in the flow channel for a proton exchange membrane fuel cell (PEMFC) using the finite element method (FEM). The heat transfer enhancement has been analyzed by transversely installing a baffle plate and a rectangular cylinder to manage flow pattern in the flow channel of the fuel cell. Case studies include baffle plates (gap ratios from 00.05 to 0.2) and the rectangular cylinder (width-to-height ratios from 0.66 to 1.66 with a constant gap ratio of 0.2; various gap ratios from 0.05 to 0.3 with a constant width-to-height ratio 1.0) at constant Reynolds number. The results show that the transverse installation of a baffle plate and a rectangular cylinder in the flow channel can effectively enhance the local heat transfer performance of a PEMFC. The installation of a rectangular cylinder has a better effective heat transfer performance than a baffle plate; the larger the width of the cylinder is the better effective heat transfer performance becomes.  相似文献   

13.
In this work, results of an experimental investigation of the effect of geometrical parameters of V-shaped ribs on heat transfer and fluid flow characteristics of rectangular duct of solar air heater with absorber plate having V-shaped ribs on its underside have been reported. The range of parameters for this study has been decided on the basis of practical considerations of the system and operating conditions. The investigation has covered a Reynolds number (Re) range of 2500-18000, relative roughness height (e/Dh) of 0.02-0.034 and angle of attack of flow (α) of 30-90° for a fixed relative pitch of 10. Results have also been compared with those of smooth duct under similar flow conditions to determine the enhancement in heat transfer coefficient and friction factor. The correlations have been developed for heat transfer coefficient and friction factor for the roughened duct.  相似文献   

14.
A numerical study of a three‐dimensional turbulent flow in a rectangular T‐bifurcating duct was performed. It focused on the analysis of heat transfer in the branching duct at 90 to the main flow. Including separation and reattachment phenomena, the flow seemed to be anisotropic. The closure system of the full set of Navier–Stokes equations governing the flow was based on the on one point statistical modeling using a low Reynolds number second‐order full stress transport model. For several aspect ratios, results show that in addition to the recirculation zone in the branching duct close to the upstream side; pairs of streamwise vortices were generated downstream of the junction zone with their centers moving towards the symmetry plane. The effect of the aspect ratio of the branching section in enhancing this phenomenon and flow rate effect on the heat transfer were particularly analyzed in this paper.  相似文献   

15.
This study presents the determination of optimum values of the design parameters in a heat exchanger with a rectangular duct by using Taguchi method. The heat exchanger has plate-fins containing periodically interrupted diverging and converging channel flow domains. The experimental investigation for the established heat exchanger involves short rectangular fins attached in 8 × 8 arrays to a surface having various inclination angles. The effects of the six design parameters such as the ratio of the duct channel width to height, the ratio of the winglets length to the duct channel length, inclination angles of winglets, Reynolds number, flow velocity and pressure drop are investigated. In the Taguchi experimental design method, Nusselt number and friction factor are considered as performance parameters. An L25 (56) orthogonal array is chosen as an experimental plan for the design parameters. The analysis of Taguchi method conducted with an optimization process to reach minimum pressure drop (friction factor) and maximum heat transfer (Nusselt number) for the designed heat exchanger. Experimental results validated the suitability of the proposed approach.  相似文献   

16.
As is well known, the heat transfer coefficient of a solar air heater duct can be increased by providing artificial roughness on the heated wall (i.e. the absorber plate). Experiments were performed to collect heat transfer and friction data for forced convection flow of air in solar air heater rectangular duct with one broad wall roughened by wedge shaped transverse integral ribs. The experiment encompassed the Reynolds number range from 3000 to 18000; relative roughness height 0.015 to 0.033; the relative roughness pitch 60.17φ−1.0264<p/e<12.12; and rib wedge angle (φ) of 8, 10, 12 and 15°. The effect of parameters on the heat transfer coefficient and friction factor are compared with the result of smooth duct under similar flow conditions. Statistical correlations for the Nusselt number and friction factor have been developed in terms of geometrical parameters of the roughness elements and the flow Reynolds number.  相似文献   

17.
An experimental study was performed to investigate the heat transfer characteristics of the mixed convection flow through a horizontal rectangular channel where open-cell metal foams of different pore densities (10, 20 and 30 PPI) were situated. A uniform heat flux was applied at all of the bounding walls of the channel. For each of three values of the uniform heat flux, temperatures were measured on the entire surfaces of the walls. Results for the average and local Nusselt numbers are presented as functions of the Reynolds and Richardson numbers. The Reynolds number based on the channel height of the rectangular channel was varied from 600 to 33000, while the Richardson number ranged from 0.02 to 103, extending over forced, mixed and natural convection. Second important parameter that influences the heat transfer is the aspect ratio of the foams. Three different aspect ratios (AR) as 0.25, 0.5 and 1 are tested. Based on the experimental data, new empirical correlations have been constructed to link the Nusselt number. The results of all cases were compared to that of the empty channel and the literature. We found that our results were in agreement with those that are mentioned in the literature.  相似文献   

18.
Experimental and computational investigations have studied the heat transfer, friction factor, and enhancement of heat transfer in a horizontal tube equipped with rectangular cut ring inserts and different diameter ratios (D/d) and pitch-to-tube diameter ratios (p/dt). In the present study, air having a Reynolds no. range of 6700–20,100 was used as a working fluid. Three diameter ratios (D/d) were considered experimentally and numerically as 1.2, 1.25, and 1.3, and the pitch-to-tube diameter ratio (p/dt) was (1, 0.625, and 0.5). Air was forced as working fluid through the tube and a uniform heat flux of 2000, 3500, and 5000 W/m2 was applied through the tube's exterior surface. On the basis of the turbulence model kɛ with various parameters, three-dimensional numerical simulations using the ANSYS Fluent software 17.2 were investigated. Under the same working conditions, the results manifested a higher heat transfer rate and friction factor as compared to the plain tube. The results evinced that the Nusselt number for a horizontal tube equipped with rectangular cut ring inserts having various pitch ratios and diameter ratios is discovered to be higher than that for the plain tube. With the increased ring spacing, the overall improvement in heat transfer occurred. And, with a rise in Re, the total enhancement ratio decreased. Consequently, the greatest overall improvement attained was 38% at Reynolds number (Re = 12,860) with the pitch ratio (p/dt = 1). The three diameter ratios (D/d) of 1.3, 1.25, and 1.2 gives in this study the average thermal performance factor in the value of 1.6, 1.5, and 1.4, respectively. Using the Nusselt number and friction factor, the results are correlated as a function of the Reynolds number, diameter ratio, and pitch ratio.  相似文献   

19.
This paper shows the effects of clearance length between a body and a duct wall, and duct height on the heat transfer characteristics and flow behavior at a downstream region of the body when a blunt body was set in a parallel plate duct with some distance separating it from the duct wall as a turbulence promoter. For the ratio of clearance to body height, C/D = 0.05–01, the heat transfer was characterized by the reattachment of shear flow separated from the body. Furthermore, the heat transfer depended on both the reattachment flow and the separation vortex at C/D = 0.15–0.2, and the side vortex induced by Karman vortex at C/D = 0.25–0.275 was also observed. We found the reattachment flow gives a superior effect to enhance heat transfer at a low Reynolds number, but at a larger Reynolds number, the side vortex induced by Karman vortex becomes more effective to heat transfer enhancement. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(5): 336–349, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20067  相似文献   

20.
Heat transfer in a rotating rib-roughened rectangular duct was numerically simulated by using the large eddy simulation with a Lagrangian dynamic subgrid-scale model. The rotation number and the duct cross-sectional aspect ratio (0.25, 0.5, 1.0, 2.0, and 4.0) were varied for a friction Reynolds number of 350 and rib angle of 60°. The present results clearly showed the locally high heat transfer at several locations and how it was changed by the duct aspect ratio. The dissimilarity between the streamwise velocity and temperature was observed for all the aspect ratio cases in the rotating case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号