首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
采用金相显微镜、扫描电镜、电子万能试验机等分析手段对在实验室熔铸的7085铝合金的铸态组织、均匀化退火组织、固溶处理后的组织、固溶时效后的力学性能及断口形貌进行了检测分析。结果表明,采取430℃×12 h+475℃×24 h的双级均匀化退火处理能够完全消除枝晶偏析,Zn原子完全溶解到基体中;在470℃固溶处理时,除少部分粗大第二相外,大部分第二相均回溶到基体中,固溶效果最好; 470℃×120 min固溶+120℃×24 h时效处理后合金的力学性能最佳,屈服强度、抗拉强度、伸长率分别为541 MPa、592 MPa、13. 85%,断口形貌为以穿晶断裂为主的混合型断裂。  相似文献   

2.
以Cu-10Ni-4.5Sn为研究对象,探讨合金的铸态组织、性能,以及均匀化处理及软化退火条件等对后续固溶时效处理强化效果的影响。试验研究表明,铸锭在冷轧开坯前,采用750℃×12h均匀化处理(均匀化处理后铸态合金的抗拉强度和电导率分别为241.3MPa和5.8MS/m),经过总加工率为60%的冷轧后,在700℃×6h条件下软化退火,再经总加工率为85%的冷轧,在800℃×1h固溶处理及400℃×6h下进行时效处理后,其带材的电导率及硬度(HV)可达8.8MS/m和378.6,合金抗拉强度及伸长率分别为1275.9MPa和3.0%。  相似文献   

3.
研究了退火温度对等通道转角挤压(ECAP)Fe17.80Mn4.73Si7.80Cr4.12N i合金力学性能及显微组织的影响。结果表明,等通道挤压工艺能显著提高合金的屈服强度和抗拉强度,两道次挤压后合金的屈服强度达到880 MPa,比固溶态高660 MPa。退火温度从300℃升高到600℃时,合金屈服强度和抗拉强度降低,伸长率升高。挤压后经700℃×30 m in退火后,材料的伸长率达到40%,屈服强度达到426 MPa,再结晶基本完成,晶粒尺寸仅为0.3~2.5μm。细晶强化是该合金强度和伸长率提高的主要原因。  相似文献   

4.
均匀化退火对AZ91D镁合金组织与性能的影响   总被引:6,自引:2,他引:4  
为改善铸态AZ91D镁合金的不均匀组织,对铸态试样进行了均匀化退火处理.结果表明,经380-420℃, 8~40h的均匀化处理后,枝晶偏析大部分消除;再经缓慢冷却,β相以细小的针状或层片状脱溶析出.经布氏硬度测试,退火析出后合金硬度由铸态的67.5HB提高到80HB;力学性能测试结果表明,经均匀化退火处理后合金的屈服强度变化不大,抗拉强度由铸态的173MPa增加到259MPa,伸长率则由2%增加到8%.p相形态及分布的改变是AZ91D镁合金力学性能增强的主要原因.  相似文献   

5.
采用金相电镜、扫描电镜、EDS能谱分析、拉伸性能测试与JMat-Pro材料仿真软件等测试分析手段,研究了Al-6.5Mg合金铸态与退火热处理态下的微观组织与力学性能。结果表明,Al-6.5Mg合金铸态晶粒尺寸约为90μm,平均抗拉强度、屈服强度、伸长率与断面收缩率分别为228 MPa、131.7 MPa、31.9%与39%,铸态断口形貌呈现为典型的韧窝断裂。经500℃×24h与520℃×24h退火热处理后,合金材料的屈服强度、伸长率与断面收缩率保持不变,抗拉强度分别提升了23.2%与24.2%,为281MPa与283MPa,断口形貌仍呈现为韧窝断裂;受退火过程热力学驱动,晶粒内部与晶界处的Mg元素摩尔分数略有增加。  相似文献   

6.
对AZ61铸锭挤压前的两种均匀化预处理工艺进行对比研究:即390℃保温4h的均匀化退火工艺和390℃保温4h挤压墩粗。通过光学显微镜观察和室温拉伸试验,比较两种不同的预处理方式对AZ61合金组织和力学性能的影响。结果表明:390℃保温4h高温墩粗与390℃保温4h均匀退火相比,没有明显提高AZ61合金铸态组织枝晶偏析消除程度;两种不同预处理后的合金经挤压后,显微组织差异不大,均由细小等轴的再结晶晶粒和大量的破裂第二相组成。经390℃保温4h均匀退火后挤压的AZ61合金,室温抗拉强度、屈服强度和伸长率分别为329MPa、244MPa和12.1%;经390℃保温4h墩粗后挤压的合金的室温拉伸抗拉强度、屈服强度和伸长率分别提高为340MPa、268MPa和14.5%。  相似文献   

7.
采用光学显微镜(OM)、拉伸试验、硬度测试、SEM断口分析等研究了不同时间深冷处理对Al-7Si-2Cu-0.3Mg合金组织及力学性能的影响。结果表明:对铸态Al-7Si-2Cu-0.3Mg合金进行520℃×6 h固溶+-196℃不同时间深冷+160℃×6 h时效处理试验,随着深冷时间的增加,合金的抗拉强度和硬度逐渐增加,伸长率逐渐降低,抗拉强度和硬度在深冷22 h前提升明显。固溶+22 h深冷+时效处理合金的抗拉强度、硬度分别为351.2 MPa、135.5 HB,比固溶+时效处理合金分别提高了10.1%和8.4%。随着深冷处理时间的增加,合金晶粒尺寸先减小后增大,固溶+22 h深冷+时效处理合金的晶粒较为均匀细小,深冷处理有效改善了合金的组织。  相似文献   

8.
研究了固溶时效工艺对铝含量为10%的Mg-10Al-1Zn镁合金组织和力学性能的影响。结果表明:430℃固溶处理10 h后,合金中第二相完全固溶,再经时效处理后,第二相以点状均匀析出,同时析出一定数量的层片状组织。固溶时效处理后,合金强度、硬度大幅提高,经430℃×10 h固溶+250℃×6 h时效处理后,硬度由铸态的69.5 HBW提高到85.8 HBW,抗拉强度由铸态的144.99 MPa提高到303.36 MPa,伸长率提高了一倍。  相似文献   

9.
Sc微合金化对Al-Zn-Mg-Cu-Zr合金组织性能的影响   总被引:5,自引:3,他引:2  
采用铸锭冶金法制备了Al-8.0Zn-2.0Mg-1.2Cu-0.15Zr-xSc合金,对合金进行了固溶、时效处理,测试了不同状态下合金的力学性能和电导率,利用光学显微镜、扫描电镜和透射电子显微镜研究了合金不同状态的显微组织。结果表明:添加微量钪形成的一次Al3(Sc,Zr)相可作为异质形核核心,细化合金铸态组织;均匀化退火过程中析出的二次Al3(Sc,Zr)粒子强烈钉扎位错和亚晶界,有效阻碍固溶处理过程中合金的再结晶;含0.30%Sc的Al-Zn-Mg-Cu-Zr合金的抗拉强度和伸长率显著高于不加钪的铝合金,经一般固溶及回归再时效(RRA)处理后含0.30%Sc合金的抗拉强度提高36 MPa、屈服强度提高30 MPa、伸长率提高3.0%;采用470℃×60 min+485℃×60 min强化固溶处理,降低合金固溶态的电导率,将合金固溶态以及T6态的抗拉强度分别提高了79.6 MPa、55.8 MPa。  相似文献   

10.
设计了一种Al-Zn-Cu-Mg高强铝合金,采用金相分析、力学性能测定,断口扫描等,对该合金的均匀化和固溶工艺进行了研究。结果表明:合金铸态组织中存在非平衡共晶相,经430℃×12 h+475℃×24 h双级均匀化处理后非平衡共晶化合物基本消失,Zn元素扩散基本结束,均匀化效果好。合金经470℃固溶处理60 min时,综合力学性能最佳,抗拉强度达到623 MPa,屈服强度达到571 MPa,伸长率为12.17%。  相似文献   

11.
以挤压铸造A356.2铝合金发动机悬置支架为研究对象,对支架铸态组织、不同固溶时效热处理后的显微组织与力学性能,以及内部缺陷进行了分析研究。结果表明,挤压铸造A356.2铝合金铸态组织由α-Al相和Al-Si共晶组成,晶粒尺寸约为148μm,二次枝晶间距约为20μm;经固溶时效处理后,共晶Si一部分溶入α-Al相中,一部分以粒状、球状形式分布在α-Al晶界;固溶时间、时效温度和时效时间对A356.2合金的力学性能有一定影响。试样经过535℃×6h固溶+8min水淬+170℃×6h时效处理后,抗拉强度为340.5MPa,屈服强度为274.5MPa,伸长率为10%,满足支架整体力学性能要求。  相似文献   

12.
研究了WE43稀土镁合金在不同热处理工艺下显微组织、力学性能的变化规律,从而得出最佳的热处理工艺。研究结果表明WE43稀土镁合金铸态组织为等轴状晶粒,比较均匀,平均晶粒尺寸为40 μm;铸造冷却凝固的过程中,在晶界处形成了离异共晶组织;经520 ℃×8 h固溶处理后的组织,共晶相的数量和形态发生了明显的变化,枝晶偏析基本消除,晶界上仍有少量未溶的第二相。230 ℃×8 h时效后稀土第二相的数量增加,并且在晶粒内部析出了点状弥散的稀土相;经过250 ℃×16 h的时效后,合金的硬度达到了峰值,随着时效时间的继续延长,合金的硬度下降。固溶处理后WE43稀土镁合金的抗拉强度为162.59 MPa左右,断后伸长率约为5.0%;而经过250 ℃时效处理后,其抗拉强度明显增加,断后伸长率在4%左右。  相似文献   

13.
研究了Mg-5Gd-1Mn-0.3Sc合金铸态显微组织及在520 ℃固溶处理不同时间后的组织结构演变行为.结果表明,合金铸态组织表现为粗大的枝晶结构,晶界上或枝晶之间都分布着大量的富溶质相,其中相当数量的GdMg3相在非平衡凝固过程中生成,而在固溶处理中并未消除.合金经520 ℃不同时间固溶处理,晶粒尺寸变化异常.固溶14 h后晶粒尺寸减小到铸态的1/3,继续延长固溶时间,晶粒尺寸重新变大.因此控制固溶温度和时间,可获得试验合金晶粒细化的效果.  相似文献   

14.
研究了变形、时效对AZ80镁合金组织性能的影响.铸态AZ80镁合金经470℃×8h固溶处理,然后在400℃条件下进行不同变形量的热轧变形,变形后的部分镁合金进行170℃×16 h时效处理.结果表明,随着变形量的增加晶粒得到细化,当变形量达到80%时,晶粒尺寸由铸态的105 μ.m细化到3 μm,此时抗拉强度达到282.49 MPa;合金的伸长率先增加后减小,变形量为50%时伸长率达到最大,为24.21%;屈服强度先降低后增加.  相似文献   

15.
通过金相显微镜、扫描电镜、X射线衍射等,分析了砂型差压铸造Mg-10Gd-3Y-Zr合金(GW103K)固溶处理后的微观组织,并进行了室温力学性能试验,对其断口形貌和断裂机理进行了探讨.结果表明,当固溶温度由500℃上升到535℃时,合金的晶粒尺寸由73μm增加到90μm,T4态合金主要由αMg固溶体+富(Gd+Y)方块相组成,经535℃×10 h处理后的合金具有最佳综合力学性能,其抗拉强度、屈服强度和伸长率分别达到231 MPa、149 MPa和4.8%;T4态合金的断裂行为主要为沿晶断裂,同时伴有少量的穿晶断裂.  相似文献   

16.
以加压成形工艺制备了6082铝合金。合金经530℃×25 min的固溶处理后,进行了不同温度和时间的时效处理试验。利用显微组织观察、硬度测试、拉伸性能测试等测试分析手段,研究了不同时效处理对6082铝合金组织和力学性能的影响。结果表明:随着时效温度的升高,6082铝合金试样晶内和晶界析出的强化相逐渐增多。200℃时效试样组织中晶粒明显增大,且析出相粒子有所长大。经180℃×8 h时效处理的试样,组织中大量强化相粒子弥散分布在晶内和境界处,晶粒也未明显长大。铸态6082铝合金试样经530℃×25 min+180℃×8 h的固溶时效处理,试样强化效果最佳,合金的抗拉强度、屈服强度和硬度分别达到317.5 MPa、307.4 MPa和143.4 HV,其中抗拉强度比铸态试样提高了68.4%。  相似文献   

17.
均匀化退火对ZA27合金组织与性能的影响   总被引:4,自引:2,他引:2  
采用差示扫描量热法(DSC)、光学显微镜(OM)、扫描电镜(SEM)等手段研究了均匀化处理对铸态ZA27合金显微组织及力学性能的影响,确定了该合金的均匀化温度及过烧温度.结果表明,合金铸态组织存在严重的枝晶偏析及明显的非平衡共晶组织,经360℃×12 h均匀化退火后,枝晶偏析及非平衡共晶β相基本消除,晶界处富Cu的ε相溶入基体,布氏硬度为84.5HB,抗拉强度为326 MPa,伸长率为10.2%.ZA27合金铸锭适宜的均匀化处理工艺为360℃×12 h.  相似文献   

18.
《热处理》2021,(4)
采用电子束增材制造技术制备了 TC4钛合金试棒,对试棒进行了 700~1 000℃的退火、900~960℃的固溶处理和550℃时效处理,检测了热处理后合金的显微组织和力学性能。结果表明:随着退火温度的升高,合金晶粒内α相的取向差增大,β相含量增加,针状α相数量减少,α相发生粗化;1 000℃退火的合金α相板条呈等轴状,组织明显粗大;随着固溶温度的升高,合金组织中针状次生α相数量增多,组织粗化;960℃固溶处理的合金组织为全片层状的次生α相;随着退火温度的升高,合金的抗拉强度和塑性均下降;随着固溶温度的升高,合金的抗拉强度增加而塑性降低,960℃固溶处理的合金抗拉强度最高,达1 167.2 MPa,断后伸长率为6%;经900℃×1 h固溶处理、水冷随后550℃×4 h时效处理的合金力学性能最好,抗拉强度为1 075.7 MPa,断后伸长率为10%。  相似文献   

19.
铸态铍铝合金组织为粗大的柱状树枝晶,提高冷却速度或塑性变形能细化晶粒,减小柱状晶区面积,提高力学性能。结果表明,当冷却速度达300℃/s时,Be-38Al合金晶粒尺寸仅为5~10μm,铸锭表现为完全的等轴晶组织。铸造Be-38Al合金经热压变形后,柱状晶发生碎化。在500℃将热压坯锭由16.5 mm轧制至5.0 mm,枝晶组织进一步碎化,一些区域形成沿轧制方向变形拉长的晶粒,这表明Be-38Al合金在轧制过程中未发生动态再结晶。与铸态合金相比,Be-38Al合金的热轧板材力学性能提高,抗拉强度由61.5 MPa提高到269.8 MPa,伸长率由2.0%提高到3.5%。  相似文献   

20.
采用光学显微镜、扫描电镜、导电率测试、拉伸测试等研究了不同均匀化处理工艺对高强导线用Al-Mg-SiB-Sr-RE合金铸态组织及性能的影响。结果表明:铸态Al-Mg-Si-B-Sr-RE合金组织存在成分偏析,合金导电率、抗拉强度与伸长率分别为44.3%IACS、177.4 MPa和13.0%。铸态Al-Mg-Si-B-Sr-RE合金经过580℃×9 h均匀化处理后,成分偏析得到明显改善。580℃×9 h均匀化后,合金的导电率、抗拉强度与伸长率分别为56.5%IACS、168.3 MPa和13.2%,综合性能最佳。580℃×9 h为Al-Mg-Si-B-Sr-RE合金的最佳均匀化处理工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号