首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In many large, distributed or mobile networks, broadcast algorithms are used to update information stored at the nodes. In this paper, we propose a new model of communication based on rendezvous and analyze a multi-hop distributed algorithm to broadcast a message in a synchronous setting. In the rendezvous model, two neighbors u and v can communicate if and only if u calls v and v calls u simultaneously. Thus nodes u and v obtain a rendezvous at a meeting point. If m is the number of meeting points, the network can be modeled by a graph of n vertices and m edges. At each round, every vertex chooses a random neighbor and there is a rendezvous if an edge has been chosen by its two extremities. Rendezvous enable an exchange of information between the two entities. We get sharp lower and upper bounds on the time complexity in terms of number of rounds to broadcast: we show that, for any graph, the expected number of rounds is between ln n and O (n2). For these two bounds, we prove that there exist some graphs for which the expected number of rounds is either O (ln (n)) or Ω (n2). For specific topologies, additional bounds are given.  相似文献   

2.
《Information and Computation》2007,205(7):1078-1095
Assume that G = (V, E) is an undirected graph, and C  V. For every v  V, denote Ir(G; v) = {u  C: d(u,v)  r}, where d(u,v) denotes the number of edges on any shortest path from u to v in G. If all the sets Ir(G; v) for v  V are pairwise different, and none of them is the empty set, the code C is called r-identifying. The motivation for identifying codes comes, for instance, from finding faulty processors in multiprocessor systems or from location detection in emergency sensor networks. The underlying architecture is modelled by a graph. We study various types of identifying codes that are robust against six natural changes in the graph; known or unknown edge deletions, additions or both. Our focus is on the radius r = 1. We show that in the infinite square grid the optimal density of a 1-identifying code that is robust against one unknown edge deletion is 1/2 and the optimal density of a 1-identifying code that is robust against one unknown edge addition equals 3/4 in the infinite hexagonal mesh. Moreover, although it is shown that all six problems are in general different, we prove that in the binary hypercube there are cases where five of the six problems coincide.  相似文献   

3.
With the use of Adomian decomposition method, the prototypical, genuinely nonlinear K(m,n) equation, ut+(um)x+(un)xxx=0, which exhibits compactons  solitons with finite wavelength  is solved exactly. Two numerical illustrations, K(2,2) and K(3,3), are investigated to illustrate the pertinent features of the proposed scheme. The technique is presented in a general way so that it can be used in nonlinear dispersive equations.  相似文献   

4.
5.
In this paper we describe scalable parallel algorithms for building the convex hull and a triangulation ofncoplanar points. These algorithms are designed for thecoarse grained multicomputermodel:pprocessors withO(n/p)⪢O(1) local memory each, connected to some arbitrary interconnection network. They scale over a large range of values ofnandp, assuming only thatnp1+ε(ε>0) and require timeO((Tsequential/p)+Ts(n, p)), whereTs(n, p) refers to the time of a global sort ofndata on approcessor machine. Furthermore, they involve only a constant number of global communication rounds. Since computing either 2D convex hull or triangulation requires timeTsequential=Θ(n log n) these algorithms either run in optimal time,Θ((n log n)/p), or in sort time,Ts(n, p), for the interconnection network in question. These results become optimal whenTsequential/pdominatesTs(n, p) or for interconnection networks like the mesh for which optimal sorting algorithms exist.  相似文献   

6.
In this paper, we introduce “approximate solutions" to solve the following problem: given a polynomial F(x, y) over Q, where x represents an n -tuple of variables, can we find all the polynomials G(x) such that F(x, G(x)) is identically equal to a constant c in Q ? We have the following: let F(x, y) be a polynomial over Q and the degree of y in F(x, y) be n. Either there is a unique polynomial g(x)   Q [ x ], with its constant term equal to 0, such that F(x, y)  = j = 0ncj(y  g(x))jfor some rational numbers cj, hence, F(x, g(x)  + a)   Q for all a  Q, or there are at most t distinct polynomials g1(x),⋯ , gt(x), t  n, such that F(x, gi(x))   Q for 1   i  t. Suppose that F(x, y) is a polynomial of two variables. The polynomial g(x) for the first case, or g1(x),⋯ , gt(x) for the second case, are approximate solutions of F(x, y), respectively. There is also a polynomial time algorithm to find all of these approximate solutions. We then use Kronecker’s substitution to solve the case of F(x, y).  相似文献   

7.
We modify the concept of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982) 515–534 towards a faster reduction algorithm. We organize LLL-reduction in segments of the basis. Our SLLL-bases approximate the successive minima of the lattice in nearly the same way as LLL-bases. For integer lattices of dimension n given by a basis of length 2O(n), SLLL-reduction runs in O (n5 +ε) bit operations for every ε > 0, compared to O (n7 +ε) for the original LLL and to O (n6 +ε) for the LLL-algorithms of Schnorr, A more efficient algorithm for lattice reduction, Journal of Algorithm, 9 (1988) 47–62 and Storjohann, Faster Algorithms for Integer Lattice Basis Reduction. TR 249, Swiss Federal Institute of Technology, ETH-Zurich, Department of Computer Science, Zurich, Switzerland, July 1996. We present an even faster algorithm for SLLL-reduction via iterated subsegments running in O (n3log n) arithmetic steps. Householder reflections are shown to provide better accuracy than Gram–Schmidt for orthogonalizing LLL-bases in floating point arithmetic.  相似文献   

8.
In this paper we consider the following problems: we are given a set of n items {u1,  , un} and a number of unit-capacity bins. Each item ui has a size wi  (0, 1] and a penalty pi  0. An item can be either rejected, in which case we pay its penalty, or put into one bin under the constraint that the total size of the items in the bin is no greater than 1. No item can be spread into more than one bin. The objective is to minimize the total number of used bins plus the total penalty paid for the rejected items. We call the problem bin packing with rejection penalties, and denote it as BPR. For the on-line BPR problem, we present an algorithm with an absolute competitive ratio of 2.618 while the lower bound is 2.343, and an algorithm with an asymptotic competitive ratio arbitrarily close to 1.75 while the lower bound is 1.540. For the off-line BPR problem, we present an algorithm with an absolute worst-case ratio of 2 while the lower bound is 1.5, and an algorithm with an asymptotic worst-case ratio of 1.5. We also study a closely related bin covering version of the problem. In this case pi means some amount of profit. If an item is rejected, we get its profit, or it can be put into a bin in such a way that the total size of the items in the bin is no smaller than 1. The objective is to maximize the number of covered bins plus the total profit of all rejected items. We call this problem bin covering with rejection (BCR). For the on-line BCR problem, we show that no algorithm can have absolute competitive ratio greater than 0, and present an algorithm with asymptotic competitive ratio 1/2, which is the best possible. For the off-line BCR problem, we also present an algorithm with an absolute worst-case ratio of 1/2 which matches the lower bound.  相似文献   

9.
We present a parallel algorithm for solving thenext element search problemon a set of line segments, using a BSP-like model referred to as thecoarse grained multicomputer(CGM). The algorithm requiresO(1) communication rounds (h-relations withh=O(n/p)),O((n/p) log n) local computation, andO((n/p) log p) memory per processor, assumingn/pp. Our result implies solutions to the point location, trapezoidal decomposition, and polygon triangulation problems. A simplified version for axis-parallel segments requires onlyO(n/p) memory per processor, and we discuss an implementation of this version. As in a previous paper by Develliers and Fabri (Int. J. Comput. Geom. Appl.6(1996), 487–506), our algorithm is based on a distributed implementation of segment trees which are of sizeO(n log n). This paper improves onop. cit.in several ways: (1) It studies the more general next element search problem which also solves, e.g., planar point location. (2) The algorithms require onlyO((n/p) log n) local computation instead ofO(log p*(n/p) log n). (3) The algorithms require onlyO((n/p) log p) local memory instead ofO((n/p) log n).  相似文献   

10.
Let L = K(α) be an Abelian extension of degree n of a number field K, given by the minimal polynomial of α over K. We describe an algorithm for computing the local Artin map associated with the extension L / K at a finite or infinite prime v of K. We apply this algorithm to decide if a nonzero a  K is a norm from L, assuming that L / K is cyclic.  相似文献   

11.
We present a simple parallel algorithm for the single-source shortest path problem in planar digraphs with nonnegative real edge weights. The algorithm runs on the EREW PRAM model of parallel computation in O((n2ε+n1−ε) log n) time, performing O(n1+ε log n) work for any 0<ε<1/2. The strength of the algorithm is its simplicity, making it easy to implement and presumable quite efficient in practice. The algorithm improves upon the work of all previous parallel algorithms. Our algorithm is based on a region decomposition of the input graph and uses a well-known parallel implementation of Dijkstra's algorithm. The logarithmic factor in both the work and the time can be eliminated by plugging in a less practical, sequential planar shortest path algorithm together with an improved parallel implementation of Dijkstra's algorithm.  相似文献   

12.
13.
Diagnosis of reliability is an important topic for interconnection networks. Under the classical PMC model, Dahura and Masson [5] proposed a polynomial time algorithm with time complexity O(N2.5) to identify all faulty nodes in an N-node network. This paper addresses the fault diagnosis of so called bijective connection (BC) graphs including hypercubes, twisted cubes, locally twisted cubes, crossed cubes, and Möbius cubes. Utilizing a helpful structure proposed by Hsu and Tan [20] that was called the extending star by Lin et al. [24], and noting the existence of a structured Hamiltonian path within any BC graph, we present a fast diagnostic algorithm to identify all faulty nodes in O(N) time, where N = 2n, n ? 4, stands for the total number of nodes in the n-dimensional BC graph. As a result, this algorithm is significantly superior to Dahura–Masson’s algorithm when applied to BC graphs.  相似文献   

14.
15.
Accurate assessment of phytoplankton chlorophyll-a (chla) concentrations in turbid waters by means of remote sensing is challenging due to the optical complexity of case 2 waters. We have applied a recently developed model of the form [Rrs? 1(λ1) ? Rrs? 1(λ2)] × Rrs(λ3) where Rrs(λi) is the remote-sensing reflectance at the wavelength λi, for the estimation of chla concentrations in turbid waters. The objectives of this paper are (a) to validate the three-band model as well as its special case, the two-band model Rrs? 1(λ1) × Rrs(λ3), using datasets collected over a considerable range of optical properties, trophic status, and geographical locations in turbid lakes, reservoirs, estuaries, and coastal waters, and (b) to evaluate the extent to which the three-band model could be applied to the Medium Resolution Imaging Spectrometer (MERIS) and two-band model could be applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate chla in turbid waters.The three-band model was calibrated and validated using three MERIS spectral bands (660–670 nm, 703.75–713.75 nm, and 750?757.5 nm), and the 2-band model was tested using two MODIS spectral bands (λ1 = 662–672, λ3 = 743–753 nm). We assessed the accuracy of chla prediction in four independent datasets without re-parameterization (adjustment of the coefficients) after initial calibration elsewhere. Although the validation data set contained widely variable chla (1.2 to 236 mg m? 3), Secchi disk depth (0.18 to 4.1 m), and turbidity (1.3 to 78 NTU), chla predicted by the three-band algorithm was strongly correlated with observed chla (r2 > 0.96), with a precision of 32% and average bias across data sets of ? 4.9% to 11%. Chla predicted by the two-band algorithm was also closely correlated with observed chla (r2 > 0.92); however, the precision declined to 57%, and average bias across the data sets was 18% to 50.3%. These findings imply that, provided that an atmospheric correction scheme for the red and NIR bands is available, the extensive database of MERIS and MODIS imagery could be used for quantitative monitoring of chla in turbid waters.  相似文献   

16.
We present a divide and conquer based algorithm for optimal quantum compression/decompression, using O(n(log4n)log log n) elementary quantum operations. Our result provides the first quasi-linear time algorithm for asymptotically optimal (in size and fidelity) quantum compression and decompression. We also outline the quantum gate array model to bring about this compression in a quantum computer. Our method uses various classical algorithmic tools to significantly improve the bound from the previous best known bound of O(n3) for this operation.  相似文献   

17.
The well-known Goldbach Conjecture (GC) states that any sufficiently large even number can be represented as a sum of two odd primes. Although not yet demonstrated, it has been checked for integers up to 1014. Using two stronger versions of the conjecture, we offer a simple and fast method for recognition of a gray box group G known to be isomorphic to Sn(or An) with knownn   20, i.e. for construction1of an isomorphism from G toSn (or An). Correctness and rigorous worst case complexity estimates rely heavily on the conjectures, and yield times of O([ρ + ν + μ ] n log2n) or O([ ρ + ν + μ ] n logn / loglog n) depending on which of the stronger versions of the GC is assumed to hold. Here,ρ is the complexity of generating a uniform random element of G, ν is the complexity of finding the order of a group element in G, and μ is the time necessary for group multiplication in G. Rigorous lower bound and probabilistic approach to the time complexity of the algorithm are discussed in the Appendix.  相似文献   

18.
Let C be a curve of genus 2 and ψ1: C    E 1  a map of degree n, from C to an elliptic curveE1 , both curves defined over C. This map induces a degree n map φ1:P1    P 1  which we call a Frey–Kani covering. We determine all possible ramifications for φ1. If ψ1:C    E 1  is maximal then there exists a maximal map ψ2: C    E 2  , of degree n, to some elliptic curveE2 such that there is an isogeny of degree n2from the JacobianJC to E1 × E2. We say thatJC is (n, n)-decomposable. If the degree n is odd the pair (ψ2, E2) is canonically determined. For n =  3, 5, and 7, we give arithmetic examples of curves whose Jacobians are (n, n)-decomposable.  相似文献   

19.
The lowest-energy structures and stabilities of the heterodinuclear clusters, CNLin (n = 1–10) and relevant CNLin+ (n = 1–10) cations, are studied using the density functional theory with the 6-311 + G(3df) basis set. The CNLi6 and CNLi5+ clusters are the first three-dimensional ones in the CNLin0/+ series, respectively, and the CN group always caps the Lin0/+ moiety in the CNLin0/+ (n = 1–9) configurations. The CN triple bond is found to be completely cleaved in the CNLi100/+ clusters where the C and N atoms are bridged by two Li atoms. The CNLin (n = 2–10) clusters are hyperlithiated molecules with delocalized valence electrons and consequently possess low VIP values of 3.780–5.674 eV. Especially, the CNLi8 and CNLi10 molecules exhibit lower VIPs than that of Cs atom and can be regarded as heterobinuclear superalkali species. Furthermore, these two superalkali clusters show extraordinarily large first hyperpolarizabilities of 19,423 and 42,658 au, respectively. For the CNLin+ cationic species, the evolution of the energetic and electronic properties with the cluster size shows a special stability for CNLi2+.  相似文献   

20.
《Information and Computation》2007,205(11):1575-1607
We propose a new approximation technique for Hybrid Automata. Given any Hybrid Automaton H, we call Approx(H, k) the Polynomial Hybrid Automaton obtained by approximating each formula ϕ in H with the formulae ϕk obtained by replacing the functions in ϕ with their Taylor polynomial of degree k. We prove that Approx(H, k) is an over-approximation of H. We study the conditions ensuring that, given any ϵ > 0, some k0 exists such that, for all k > k0, the “distance” between any vector satisfying ϕk and at least one vector satisfying ϕ is less than ϵ. We study also conditions ensuring that, given any ϵ > 0, some k0 exists such that, for all k > k0, the “distance” between any configuration reached by Approx(H, k) in n steps and at least one configuration reached by H in n steps is less than ϵ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号