首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《塑料》2016,(4)
针对塑料餐盘在注射成型过程中由于翘曲变形造成的中间凸起引起使用性能的缺陷,结合AMI注射成型分析软件和正交试验设计对餐盘的注射成型过程进行数值模拟,通过对试验结果数据的定量分析,系统分析了模具温度、熔体温度、注射速率、保压压力、保压时间、冷却时间等工艺参数对餐盘翘曲变形的影响规律和影响贡献率,从而得到最优的工艺参数组合,并模拟分析出最优工艺参数组合下的翘曲变形量。用数值模拟结果指导餐盘注射成型模具设计,并通过实际注射成型验证其明显改善了塑料餐盘的翘曲变形缺陷。  相似文献   

2.
对汽车轮眉的注塑成型过程进行了模拟分析。首先通过有限元软件ANSYS对轮眉进行载荷分析,得到轮眉的应力分布图和形变分布图。然后利用Moldfl ow软件模拟轮眉的注塑成型过程,设计了两种注塑成型方案,分别进行流变、冷却和翘曲模拟,分析轮眉的填充、保压、收缩和变形等情况,选择最优的注塑成型方案。再采用正交试验法分析影响轮眉翘曲变形的因素,寻找可使轮眉翘曲变形量最小的最优参数组合。结果表明:轮眉应力集中的位置在外表面拐角处;最优的注塑成型方案为单浇口浇注;各因素对翘曲变形的影响程度为保压时间保压压力熔体温度模具温度注射时间;最优工艺参数组合为熔体温度250℃、模具温度40℃、注射时间2.5 s、保压时间10 s、保压压力90 MPa。最优工艺条件下,轮眉的最大翘曲量可降至0.774 mm。  相似文献   

3.
以汽车后视镜壳体[材料为丙烯腈-丁二烯-苯乙烯共聚物(ABS)]为研究对象,以减少成型过程的翘曲变形量为目标,采用Taguchi试验设计方法,在模具温度、熔体温度、注射时间、保压压力、保压时间和冷却时间等不同注射工艺条件下,对ABS后视镜壳体翘曲变形的影响程度进行了分析,并对注射成型工艺参数进行优化,使翘曲变形量达到最小。  相似文献   

4.
《塑料科技》2016,(3):70-75
以某一塑料杯为研究对象,采用正交试验法设计试验方案,使用Moldflow对其进行翘曲模拟分析。以熔体温度、模具温度、注射时间、保压时间、保压压力为试验因素,分析其对翘曲变形量的影响规律,旨在获取最小翘曲变形量,找到最优的工艺参数组合,再次模拟验证得到翘曲变形量为0.066 0 mm。通过分析,有效减小翘曲变形,并且发现5因素对翘曲变形影响程度为:保压时间熔体温度模具温度注射时间保压压力,进而提高了制品的尺寸精度和使用性能,为实际注塑工艺参数的设置提供了正确理论指导。  相似文献   

5.
本文以注射成型照相机前壳为研究对象,以注塑成型中的翘曲量为优化目标,利用正交试验结合CAE模拟技术,研究模具温度、熔体温度、注射时间、保压时间、保压压力和冷却时间对制品翘曲的影响规律。用均值分析法得到最小翘曲变形的一组优化工艺参数组合,并进行CAE模拟验证。再运用方差分析确定各个工艺参数对翘曲变形的影响程度。  相似文献   

6.
王辉  孙寿云  邓云祥 《塑料制造》2011,(10):49-51,55
本文以注射成型照相机前壳为研究对象,以注塑成型中的翘曲量为优化目标,利用正交试验结合CAE模拟技术,研究模具温度、熔体温度、注射时间、保压时间、保压压力和冷却时间对制品翘曲的影响规律。用均值分析法得到最小翘曲变形的一组优化工艺参数组合,并进行CAE模拟验证。再运用方差分析确定各个工艺参数对翘曲变形的影响程度。  相似文献   

7.
以方形塑料板注射成型工艺为例,以翘曲变形为评价指标,采用Taguchi方法、极差和方差分析方法,优化了模具温度、熔体温度、保压压力和保压时间,获得了最佳工艺参数组合。进行了单因素变动实验和工艺参数交互作用实验,研究了单工艺参数和交互作用对塑料板翘曲变形的影响。结果表明,翘曲变形量随模具温度的增大而增大,随熔体温度、保压压力和保压时间的增大而减小;模具温度和熔体温度、模具温度和保压压力、熔体温度和保压时间的交互作用对翘曲变形影响显著,模具温度和保压时间、熔体温度和保压压力、保压压力和保压时间的交互作用对翘曲变形影响不显著。  相似文献   

8.
针对某汽车音响面板在注射成型过程中易发生翘曲变形的现象,在该塑件工艺分析和翘曲变形预测理论分析的基础上,利用UG和Moldflow构建了该塑件的三维模型和分析模型,设计了以翘曲变形值最小为实验目标和以充填时间A、熔体温度B、模具温度C、保压压力D和保压时间E为因子的正交实验方案,并运用Moldflow进行了注射成型工艺模拟实验。通过对实验结果进行极差和方差分析得出,对塑件的翘曲变形量影响程度从大到小依次为DBACE,保压压力占比65.76%,最优工艺参数为充填时间1.4 s、熔体温度250℃、模具温度60℃、保压压力64 MPa、保压时间11 s,其翘曲变形值为0.549 7 mm,比用推荐工艺参数的翘曲变形值减少了24.84%。实践表明,采用该优化工艺生产的塑件,翘曲变形小,无熔接痕,质量优良,易于装配。  相似文献   

9.
在Moldflow模拟分析的基础上,通过正交试验研究了熔体温度、模具温度、注射时间、保压压力、保压时闻和冷却时间等工艺参数对带金属嵌件的手机外壳注塑成型翘曲变形的影响,并优化了成型工艺.结果表明,保压时间和保压压力对翘曲变形的影响最大,最佳工艺组合为:熔体温度310℃,模具温度120℃,注射时间0.3 s,保压压力14...  相似文献   

10.
刘海波  张睿 《塑料科技》2023,(11):89-93
针对汽车内饰面板注塑成型翘曲变形问题,采用模流分析软件Moldflow对其进行成型过程分析,以模具温度、熔体温度、保压压力以及冷却时间为工艺变量,以制件的翘曲变形量为目标建立响应面模型,得出最佳的成型工艺参数组合。结果表明:当制件的模具温度为56℃、熔体温度为250℃、保压压力为120 MPa、冷却时间为21 s时,制件的最大翘曲变形量为2.305 mm,与未优化前相比降低1.105 mm。因素影响大小依次为:冷却时间>保压压力>模具温度>熔体温度。在最优工艺参数条件下,制件质量基本达到工业要求,制件整体成型质量较好。  相似文献   

11.
以降低注塑件翘曲值为目标,采用正交试验法,得到注塑成型工艺参数对翘曲值的影响程度由强到弱依次为保压压力、熔体温度、注射时间、保压时间和冷却时间。对单个注塑成型工艺参数变动和多注塑成型工艺参数交互作用进行了分析。结果表明:延长注射时间或升高熔体温度,均可使翘曲值先增大后减小;增大保压压力或延长保压时间均可使翘曲值逐步缩小;延长冷却时间,翘曲值则先减小后增大;翘曲值在保压压力与熔体温度、注射时间与熔体温度的交互作用下发生显著变化,而保压时间与保压压力、保压时间与熔体温度的交互作用则对翘曲值的影响不明显。  相似文献   

12.
针对玻璃纤维增强聚丙烯(PP/GF)注射成型制品存在的翘曲变形缺陷,研究了注射工艺参数如模具温度、喷嘴温度、注射速率、保压压力和保压时间对制品成型收缩率及翘曲的影响。结果表明,随着模具温度、喷嘴温度和保压压力的降低,制品的翘曲减小;适当提高注射速率和减少保压时间也可减小制品翘曲。  相似文献   

13.
以薄壁塑件为对象,研究了模具温度、熔体温度、保压时间及注射压力等工艺参数对该薄壁塑件成型翘曲的影响规律,并用正交实验法优化成型工艺方案,获得最小的翘曲塑件.结果表明,熔体温度和保压时间对塑件翘曲变形影响较为显著,模具温度对塑件翘曲基本没有显著的影响.  相似文献   

14.
采用正交试验方法,利用Moldflow分析软件对汽车车门内饰板进行注塑成型模拟,分析了熔体温度、模具温度、注射时间、保压压力和保压时间等对注塑件翘曲变形的影响,找出了可以降低车门内饰板翘曲变形量的最佳工艺参数,并通过实际生产验证了所选工艺参数的正确性。当模具温度为35℃、保压时间为18 s、保压压力为60MPa、熔体温度为220℃、注射时间为7 s时,车门内饰板的翘曲变形量最小,Moldflow软件模拟出的最小值为8.33 mm;而采用优选工艺参数进行实际注塑得到的车门内饰板翘曲变形量为8.85 mm,与模拟结果基本吻合。  相似文献   

15.
《塑料科技》2017,(7):87-90
为得到最优的注射工艺参数、缩短模具设计周期、降低成本,以塑料三脚架为研究对象,利用Moldflow软件对其注射工艺参数进行了优化。首先采用Pro/E进行塑料三脚架的CAD三维造型,利用Moldflow软件的DOE试验设计分析模块获得对产品质量影响最大的因素后,采用正交试验法对其注塑成型过程进行分析模拟,最终获得了最佳浇口位置和翘曲变形量分布的准确信息,优化了注射工艺参数,并分析了翘曲变形量与熔体温度和保压压力之间的耦合关系,对提高塑件质量、缩短生产周期、提高模具设计水平具有重要的指导意义。  相似文献   

16.
薄壁塑件注射成型工艺参数优化   总被引:5,自引:1,他引:4  
在注射成型过程中将计算机模拟技术和实验优化设计相结合,以相机外壳为例利用MoldFlow对各工艺参数进行注射成型过程的模拟.通过分析塑件体收缩变形和翘曲变形的原因,得出熔体温度是影响塑件体收缩变形的主要因素,而保压压力对翘曲变形起主导作用力.并在正交试验的指导下优化工艺参数,使收缩率和翘曲变形分别降为原来的75.9%和87.0%.  相似文献   

17.
运用正交试验,通过Moldflow模拟分析,将模拟分析样条与实际注塑成型微样条进行对比,研究了模具温度、熔体温度、保压时间、保压压力、注射压力工艺参数对注射成型制品翘曲变形的影响。通过微型样条模具进行成型实验,用三坐标测量仪对成型制品的翘曲变形进行了测量。结果表明,保压压力和熔体温度对样条翘曲变形的影响较大,实际注塑成型样条的翘曲变形量比模拟分析的翘曲变形量大,拉伸样条模拟数值与实际的平均差值为0. 205 mm,实际值比模拟值增大了约50%;冲击样条的模拟数值与实际数值的平均差值为0. 240 5 mm。  相似文献   

18.
《塑料》2014,(1)
结合正交试验法和数值分析,以最大翘曲量为质量指标,研究了不同工艺条件下某Y型电连接器接触件注塑成型过程,通过对翘曲变形的极差分析,确定了熔体温度、模具温度、注射时间、保压压力、保压时间等工艺参数对翘曲变形的影响敏感性。利用BP(back propagation)人工神经网络,建立主要工艺参数和塑件翘曲变形量之间的数学模型,并进行了预测。结果表明:所建立的数学模型具有较高的预测精度,从而达到以较少的试验实现注塑成型工艺的优化与控制。  相似文献   

19.
采用正交试验和Moldflow数值模拟相结合的方法,对汽车A柱下饰板的注射成型过程进行了分析,研究了模具温度、熔体温度、注射时间和保压压力等工艺参数对残余应力和翘曲变形的影响。通过极差分析得到,熔体温度对翘曲变形影响最大,保压压力对残余应力影响最大,最佳工艺参数组合为模具温度40 ℃,熔体温度205 ℃,注射时间5 s,保压压力45 MPa;通过仿真分析与实际成型方案进行比较,汽车A柱下饰板的翘曲变形由3.847 mm降为3.121 mm,残余应力由66.95 MPa降为65.21 MPa。  相似文献   

20.
利用Moldflow软件对模内覆膜笔记本壳体注射成型过程进行模拟,通过正交试验设计研究了工艺参数对覆膜制品翘曲变形影响的显著性差异,并对试验结果进行方差分析和验证。研究表明,保压压力和熔体温度对覆膜注塑件翘曲变形的影响最显著,其它工艺参数的影响不显著。通过工艺参数优化,获得了最优的工艺参数组合是模具温度75℃,熔体温度270℃,注射时间3 s,保压压力65 MPa,保压时间14 s,薄膜厚度0.1 mm。经过进一步的模拟仿真验证,获得最优参数组合下的翘曲变形值是所有试验中最小的,该结果与预测结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号