首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Significant progress has been made in nanoscale drugs and delivery systems employing diverse chemical formulations to facilitate the rate of drug delivery and release from the human body. The biocompatible nanomaterials have been used in biological markers, contrast agents for biological imaging, healthcare products, pharmaceuticals, drug-delivery systems as well as in detection, diagnosis and treatment of various types of diseases. Nanomedicines offer delivery of potential drugs to human organs which were previously beyond reach of microscale drugs due to specific biological barriers. The nanoscale systems work as nanocarriers for the delivery of drugs. The nanocarriers are made of biocompatible and biodegradable materials such as synthetic proteins, peptides, lipids, polysaccharides, biodegradable polymers and fibers. This review article reports the recent developments in the field of nanomedicine covering biodegradable polymers, nanoparticles, cyclodextrin, dendrimeres, liposomes and lipid-based nanocarriers, nanofibers, nanowires and carbon nanotubes and their chemical functionalization for distribution to different organs, their solubility, surface, chemical and biological properties, stability and release systems. The toxicity and safety of nanomaterials on human health is also briefly discussed.  相似文献   

2.
The dimensionality of a system has a profound influence on its physical behavior, especially for nanostructured materials where at least one of the dimensions is less than 100 nm and, in many instances, the size is comparable with the size of many fundamental physical quantities. Carbon-based nanostructured materials exhibit unique mechanical, electrical, and optical characteristics that may result in many unique device designs. The materials are biocompatible, chemically inert, yet capable of altering electronic properties in presence of some chemical species, dimensionally compatible with bio-molecules, and have interesting electronic characteristics; hence, rendering them as potential chemical and biosensors. A recent heightened awareness of the potential for inadvertent or deliberate contamination of environment and food and agricultural products has made decentralized sensing an important issue for several federal agencies. Recent progress in nanostructured materials and its possible applications in chemical and biological sensors could have a significant impact on data collection, processing, and recognition. Our present and ongoing investigation is aimed towards evaluating the applications of carbon-based nanotubes, nanowires, and nanoporous materials in unique devices and sensors, based on its unique characteristics, morphological flexibility, and biocompatibility.  相似文献   

3.
Polylactide (PLA) is one of the most innovative materials being actively investigated for a wide range of industrial applications. The polymer is a linear aliphatic thermoplastic polyester which is biodegradable as well as biocompatible, which makes it highly versatile and attractive to various commodities and medical applications. A large variety of nanoparticles of different nature and size can be blended with PLA, therefore, generating a new class of nanostructured biomaterials or nanocomposites with interesting physical properties and applications. PLA based nanostructured biomaterials are the focus of this review article, throwing light on their preparation techniques, physical properties, and industrial applications. Structural characteristics and morphological features of PLA based nanocomposites have been explained on the basis of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Depending upon the nature and characteristics of the nanoparticles, the ultimate properties of the resulting nanocomposite materials can be tailored. Biocompatible materials such as carbon nanotubes, cellulose nanowhiskers, hydroxyapitite, etc. could be incorporated into the PLA matrix, which increase the potential of PLA for biomedical applications. Applications of PLA based nanostructured materials in different areas have been summarized.  相似文献   

4.
Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk‐like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post‐processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli‐sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti‐inflammatory feature, and many others.  相似文献   

5.
Nanostructured materials have been attracting increased attention for a wide variety of applications due to their superior properties compared to their bulk counterparts. Current methods to synthesize nanostructured materials have various drawbacks such as difficulties in control of the nanostructure and morphology, excessive use of solvents, abundant energy consumption, and costly purification steps. Supercritical fluids especially supercritical carbon dioxide (scCO2) is an attractive medium for the synthesis of nanostructured materials due to its favorable properties such as being abundant, inexpensive, non-flammable, non-toxic, and environmentally benign. Furthermore, the thermophysical properties of scCO2 can be adjusted by changing the processing temperature and pressure. The synthesis of nanostructured materials in scCO2 can be classified as physical and chemical transformations. In this article, Part I of our review series, synthesis of nanostructured materials using physical transformations is described where scCO2 functions as a solvent, an anti-solvent or as a solute. The nanostructured materials, which can be synthesized by these techniques include nanoparticles, nanowires, nanofibers, foams, aerogels, and polymer nanocomposites. scCO2 based processes can also be utilized in the intensification of the conventional processes by elimination of some of the costly purification or separation steps. The fundamental aspects of the processes, which would be beneficial for further development of the technologies, are also reviewed.  相似文献   

6.
Nanostructured materials have gained importance in recent years due to their significantly enhanced properties. In particular, electrochemistry has a special role in producing a variety of nanostructured materials. In the current review, we discuss the superiority of electrochemical deposition techniques in synthesizing various nanomaterials that exhibit improved characteristics compared with materials produced by conventional techniques, as well as their classification, synthesis routes, properties and applications. The superior properties of a nanostructured nickel coating produced by electrochemical deposition are outlined. The properties of various nanostructured coating materials produced by electrochemical techniques are also described. Finally, the importance of nanostructured coatings in industrial applications as well as their potential in future technologies is emphasized.  相似文献   

7.
Progress in the development of advanced materials strongly depends on continued efforts to miniaturizing their structures; thus, a great variety of nanostructured materials are being developed nowadays. Metallic nanowires are among the most attractive nanometer-sized materials because of their unique properties that may lead to applications as interconnectors in nanoelectronic, magnetic, chemical or biological sensors, and biotechnological labels among others. A simple method to develop self-ordered arrays of metallic nanowires is based on the use of nanoporous anodic alumina (NAA) and self-assembled nanotubular titanium dioxide membranes as templates. The chemical characterization of nanostructured materials is a key aspect for the synthesis optimization and the quality control of the manufacturing process. In this work, the analytical potential of pulsed radiofrequency glow discharge with detection by time-of-flight mass spectrometry (pulsed rf-GD-TOFMS) is investigated for depth profile analysis of self-assembled metallic nanostructures. Two types of nanostructured materials were successfully studied: self-assembled NAA templates filled with arrays of single metallic nanowires of Ni as well as arrays of multilayered Au/FeNi/Au and Au/Ni nanowires and nanotubular titanium dioxide templates filled with Ni nanowires, proving that pulsed rf-GD-TOFMS allows for fast and reliable depth profile analysis as well as for the detection of contaminants introduced during the synthesis process. Moreover, ion signal ratios between elemental and molecular species (e.g., (27)Al(+)/(16)O(+) and (27)Al(+)/(32)O(2)(+)) were utilized to obtain valuable information about the filling process and the presence of possible leaks in the system.  相似文献   

8.
Abstract

Nanostructured materials have gained importance in recent years due to their significantly enhanced properties. In particular, electrochemistry has a special role in producing a variety of nanostructured materials. In the current review, we discuss the superiority of electrochemical deposition techniques in synthesizing various nanomaterials that exhibit improved characteristics compared with materials produced by conventional techniques, as well as their classification, synthesis routes, properties and applications. The superior properties of a nanostructured nickel coating produced by electrochemical deposition are outlined. The properties of various nanostructured coating materials produced by electrochemical techniques are also described. Finally, the importance of nanostructured coatings in industrial applications as well as their potential in future technologies is emphasized.  相似文献   

9.
Controlling the surface chemical and physical properties of materials and modulating the interfacial behaviors of biological entities, e.g., cells and biomolecules, are central tasks in the study of biomaterials. In this context, smart polymer interface materials have recently attracted much interest in biorelated applications and have broad prospects due to the excellent controllability of their surface properties by external stimuli. Among such materials, poly(N-isopropylacrylamide) and its copolymer films are especially attractive due to their reversible hydrogen-bonding-mediated reversible phase transition, which mimics natural biological processes. This platform is promising for tuning surface properties or to introduce novel biofunctionalities via copolymerization with various functional units and/or combination with other materials. Important progress in this field in recent years is highlighted.  相似文献   

10.
Antifogging (AF) structure materials found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies, attracting enormous research interests owing to their potential applications in display devices, traffics, agricultural greenhouse, food packaging, solar products, and other fields. The outstanding performance of biological AF surfaces encourages the rapid development and wide application of new AF materials. In fact, AF properties are inextricably associated with their surface superwettability. Generally, the superwettability of AF materials depends on a combination of their surface geometrical structures and surface chemical compositions. To explore their general design principles, recent progresses in the investigation of bioinspired AF materials are summarized herein. Recent developments of the mechanism, fabrication, and applications of bioinspired AF materials with superwettability are also a focus. This includes information on constructing superwetting AF materials based on designing the topographical structure and regulating the surface chemical composition. Finally, the remaining challenges and promising breakthroughs in this field are also briefly discussed.  相似文献   

11.
Honeycomb structures, inspired from bee honeycombs, had found widespread applications in various fields, including architecture, transportation, mechanical engineering, chemical engineering, nanofabrication and, recently, biomedicine. A major challenge in this field is to understand the unique properties of honeycomb structures, which depended on their structures, scales and the materials used. In this article, we presented a state-of-the-art review of the interdisciplinary efforts to better understand the design principles for products with honeycomb structures, including their fabrication, performance (e.g., mechanical, thermal and acoustic properties) as well as optimization design. We described how these structural perspectives have led to new insights into the design of honeycomb structures ranging from macro-, micro- to nano-scales. We presented current scientific advances in micro- and nano-technologies that hold great promise for bioinspired honeycomb structures. We also discussed the emerging applications of honeycomb structures in biomedicine such as tissue engineering and regenerative medicine. Understanding the design principles underlying the creation of honeycomb structures as well as the related scientific discovery and technology development is critical for engineering bioinspired materials and devices designed based on honeycomb structures for a wide range of practical applications.  相似文献   

12.
石墨烯基材料由于具有优异的物理和化学性能,近年来获得了广泛的研究和应用。介绍了石墨烯基材料及其生物特性,讨论了石墨烯材料产生毒性的影响因素和预防措施,对石墨烯基材料在生物医用领域(如药物载体、生物传感器、光热治疗和组织工程材料)的应用情况进行了论述,并对石墨烯基材料的研究发展方向与应用前景进行了展望。  相似文献   

13.
Adaptation (or incorporation) of nanostructured materials into biomedical devices and systems has been of great interest in recent years. Through the modification of existing nanostructured materials one can control and tailor the properties of such materials in a predictable manner, and impart them with biological properties and functionalities to better suit their integration with biomedical systems. These modified nanostructured materials can bring new and unique capabilities to a variety of biomedical applications ranging from implant engineering and modulated drug delivery, to clinical biosensors and diagnostics. This review describes recent advances of nanostructured materials for biomedical applications. The methods and technologies used to modify nanostructured materials are summarized briefly, while several current interests in biomedical applications for modified and functionalized nanostructured materials are emphasized.  相似文献   

14.
Several in vitro and in vivo experiments have shown that nanostructured materials, which mimic the nanometer topography of the native tissues, improve biocompatible responses, and result in better tissue integration in medical implants. Understanding various aspects of nanotopography is extremely important for better designs of these devices. In this review paper, recent progress in the fabrication, characterization, biological responses, and application of nanostructured materials are discussed. Specifically, materials such as ceramics and polymers used to manufacture nanostructured surfaces are briefly introduced. Techniques for fabrication and characterization of nanostructured materials are also explored. Cellular responses such as morphology, alignment, adhesion, proliferation, and profiles of gene expression of various cell types after their exposure to nanofeatured materials are particularly reviewed. Finally, the paper briefly discusses some application of nanostructured materials including those in biosensor and tissue engineering fields.  相似文献   

15.
Abstract

Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.  相似文献   

16.
Chen  Haoyun  Yuan  Xingzhong  Wang  Hou  Yu  Hanbo  Jiang  Longbo 《Journal of Materials Science》2021,56(25):13875-13924

Nanostructured covalent organic frameworks (COFs) have attracted great attentions over the past few decades due to their unique physical and chemical properties. Crystallization is sought in many application fields since it allows enhancing or even promoting properties of catalysis, energy storage and photoelectric properties. However, the crystallization process of nanostructured COFs remains to be challenging. Synthetic approaches to establish nucleation and elongation growth of COFs for controlling crystallization have drawn substantial amount of attentions. Nanostructured COFs have exhibited significant advantages when applied in (electro)photocatalysis and energy storage devices as well. In this review, recent progress in precisely design strategy of fabricating various nanostructured COFs and their applications as (electro)photocatalyzer and energy storage devices are summarized. After a brief introduction of the design principles, composition and interior architecture, the morphology of nanostructured COFs including porous and mesoporous stacked-layer structure, nanosheet structure, nanorod structure, ordered stripe arrays and various nanocomposites are thoroughly described. Reactions dedicated to crystallization process for two-dimensional (2D) COFs are discussed further. Then, the applications of nanostructured COFs as (electro)photocatalysis and energy storage devices are demonstrated. Finally, the potential advantages and challenges for the synthetic technology of nanostructured COFs materials are particularly discussed. Personal insights into the challenges and opportunities on pursuing topologies as hollow structures, dense spheres, yolk–shell structures were raised to broaden the applications.

  相似文献   

17.
Copper oxide nanoparticles (CuO NPs) use has exponentially increased in various applications (such as industrial catalyst, gas sensors, electronic materials, biomedicines, environmental remediation) due to their flexible properties, i.e. large surface area to volume ratio. These broad applications, however, have increased human exposure and thus the potential risk related to their short‐ and long‐term toxicity. Their release in environment has drawn considerable attention which has become an eminent area of research and development. To understand the toxicological impact of CuO NPs, this review summarises the in‐vitro and in‐vivo toxicity of CuO NPs subjected to species (bacterial, algae, fish, rats, human cell lines) used for toxicological hazard assessment. The key factors that influence the toxicity of CuO NPs such as particle shape, size, surface functionalisation, time–dose interaction and animal and cell models are elaborated. The literature evidences that the CuO NPs exposure to the living systems results in reactive oxygen species generation, oxidative stress, inflammation, cytotoxicity, genotoxicity and immunotoxicity. However, the physio‐chemical characteristics of CuO NPs, concentration, mode of exposure, animal model and assessment characteristics are the main perspectives that define toxicology of CuO NPs.Inspec keywords: catalysts, nanofabrication, reviews, oxidation, toxicology, gas sensors, cellular biophysics, copper compounds, nanoparticles, biochemistryOther keywords: copper oxide nanoparticles, environmental remediation, short‐ term toxicity, long‐term toxicity, human cell lines, CuO NPs exposure, physiochemical characteristics, mode of exposure, animal model, ssessment characteristics, toxicology, time‐dose interaction, oxidative stress, inflammation, cytotoxicity, genotoxicity, immunotoxicity, toxicological hazard assessment, algae species, bacterial species, fish, rats, CuO  相似文献   

18.
纳米磁性材料及其应用   总被引:17,自引:0,他引:17  
纳米磁性材料是纳米材料中最早进入工业化生产,应用十分广泛的一类功能材料,纳米磁性材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长庆恰好处于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以主电子平均自由路磁程自由路程等大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质,利用这些新特性,已涌现出一系列新材料与众多应用。  相似文献   

19.
Multicomponent and multifunctional hybrid structures based on microsized carbon fibers sheathed with aligned carbon nanotubes and their derivatives have been successfully prepared, and have been demonstrated to be an effective means for connecting nanoscale entities to the outside world and to possess interesting electrochemical properties attractive for a wide range of potential applications, including in methanol direct fuel cells and highly sensitive biological and chemical sensors. Judicious modification of the carbon-fiber-supported aligned carbon nanotubes with various functional moieties could lead to a class of novel multidimensional, multicomponent, and multifunctional materials of practical significance.  相似文献   

20.
Nature provides lots of inspiration for material and structural design for various applications. Deriving design principles from the investigation of nature can provide a rich source of inspiration for the development of multifunctional materials. The bioinspired design templates mainly include mussels, nacre, and various plant species. As a sustainable and renewable feedstock, nanocellulose can be used to fabricate advanced materials with multifunctional properties through bioinspired designs. However, challenges and opportunities remain for realizing the full potential in the design of novel materials. This article reviewed recent development in the bioinspired nanocellulose based materials and their application. This article summarizes the functions (e.g., surface wetting) and applications (e.g., composite) of bioinspired nanocellulose-based materials. The bioinspired design templates are discussed along with strategies, advantages, and challenges to the development of synthetic mimics. Additionally, mechanisms and processes (e.g., chemical modification, self-assembly) leading to biomimetic design are discussed. Finally, future research directions and opportunities of bioinspired nanocellulose-based materials are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号