首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study we tried to establish whether point-to-point aiming movements are planned in workspace, joint space, or both. Eight right-handed subjects performed horizontal, vertical, and diagonal aiming movements on a transversal plane. Movements were performed at several speeds. Curvature variations of the hand and corresponding joint-space paths were investigated as a function of position, direction, and speed. Straightness of hand paths predominated for vertical movements but was systematically violated for horizontal and top-right to bottom-left movements. Furthermore, the hand-path curvature of the latter movements increased with speed. Joint-space paths showed more deviation from a straight line than hand paths except for top-left to bottom-right movements in which the paths were equally curved. A comparison of normalized path curvatures at the hand and joint level indicated that in aiming, the coordinative rule of straight-line production seems to apply to both workspace and joint-space planning. The present findings confirm Kawato's (1996) views that optimization processes operate concurrently at the two control levels of arm-trajectory formation under study.  相似文献   

2.
This contribution deals with the examination of the consequences of different head-to-trunk positions on arm movements under normal gravity and during prolonged space flight. One of the objectives of this study was to investigate the influence of weightlessness on the condition of the spatial analysis system. Aimed arm movements in the horizontal plane (pointings towards two visual targets) were recorded, first with eyes open, head straight (learning part), then with eyes closed, head straight and during yaw or roll position of the head (performance part). Measurements related to these different head-to-trunk-positions were taken in one short-term and nine long-term cosmonauts preflight, inflight, and postflight. Terrestrial control experiments were carried out with an extended experimental design in 14 healthy volunteers. The analysis of these experiments revealed that, with eyes closed and the head in yaw position, cosmonauts before flight and control subjects exhibit significant slants of the movement plane of the arm. Contrary to terrestrial measurements, in space experiments roll tilt of the head to the right is correlated with considerable counterclockwise slant of the movement plane. This slant of the movement plane of the arm was interpreted as tilt of the internal representation of the horizontal coordinate. The effect is larger with greater distortion induced by the changed head position and with larger muscular involvement to keep this position. This effect is also increased by the reduction of information (for example, in microgravity). The amount and the direction of the horizontal offset of the arm movements are shown to be dependent on the head-to-trunk position, too. Additionally, we have found changes in the amplitude and in the duration of the arm movement, in the vertical offset, and in the curvature of the movement paths, depending on the experimental conditions.  相似文献   

3.
The fastigial nucleus (FN) receives vestibular information predominantly from Purkinje cells of the vermis. FN in the monkey can be divided in a rostral part, related to spinal mechanisms, and a caudal part with oculomotor functions. To understand the role of FN during movements in space, single-unit activity in alert monkeys was recorded during passive three-dimensional head movements from rostral FN. Seated monkeys were rotated sinusoidally around a horizontal earth-fixed axis (vertical stimulation) at different orientations 15 degrees apart (including roll, pitch, vertical canal plane and intermediate planes). In addition, sinusoidal rotations around an earth-vertical axis (yaw stimulus) included different roll and pitch positions (+/-10 degrees, +/-20 degrees). The latter positions were also used for static stimulation. One hundred fifty-eight neurons in two monkeys were modulated during the sinusoidal vertical search stimulation. The vast majority showed a uniform response pattern: a maximum at a specific head orientation (response vector orientation) and a null response 90 degrees apart. Detailed analysis was obtained from 111 neurons. On the basis of their phase relation during dynamic stimulation and their response to static tilt, these neurons were classified as vertical semicircular canal related (n = 79, 71.2%) or otolith related (n = 25; 22.5%). Only seven neurons did not follow the usual response pattern and were classified as complex neurons. For the vertical canal-related neurons (n = 79) all eight major response vector orientations (ipsilateral or contralateral anterior canal, posterior canal, roll, and nose-down and nose-up pitch) were found in Fn on one side. Neurons with ipsilateral orientations were more numerous and on average more sensitive than those with contralateral orientations. Twenty-eight percent of the vertical canal-related neurons also responded to horizontal canal stimulation. None of the vertical canal-related neurons responded to static tilt. Otolith-related neurons (n = 25) had a phase relation close to head position and were considerably less numerous than canal-related neurons. Except for pitch, all other response vector orientations were found. Seventy percent of these neurons responding during dynamic stimulation also responded during static tilt. The sensitivity during dynamic stimulation was always higher than during static stimulation. Sixty-one percent of the otolith-related neurons responded also to horizontal canal stimulation. These results show that in FN, robust vestibular signals are abundant. Canal-related responses are much more common than otolith-related responses. Although for many canal neurons the responses can be related to single canal planes, convergence between vertical canals but also with horizontal canals is common.  相似文献   

4.
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED)  相似文献   

5.
M Fetter 《Canadian Metallurgical Quarterly》1996,40(5-6):315-8; discussion 318-9
The otolith-semicircular canal interaction during postrotatory nystagmus was studied in six normal human subjects by applying fast, short-lasting, passive head and body tilts (90 degrees in the roll or pitch plane) 2 s after sudden stop from a constant velocity rotation (100 degrees/s) about the earth-vertical axis in yaw. Eye movements were measured with 3-D magnetic search coils. Following the head tilt, activity in the semicircular canal primary afferents continues to reflect the postrotatory angular velocity vector in head-centered coordinates, whereas otolith primary afferents signal a different orientation of the head relative to gravity. Pitch (roll) tilts away from upright during postrotatory nystagmus after yaw rotation elicited a transient vertical (torsional) VOR. Despite the change in head orientation relative to gravity, postrotatory eye velocity decayed closely along the axis of semicircular canal stimulation (horizontal in head coordinates). These results suggest that postrotary nystagmus is largely organized in head-centered rather than gravity-centered coordinates in humans as suggested by the Purkinje-sensation.  相似文献   

6.
The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.  相似文献   

7.
The material flow in solid-state, friction-stir, butt-welded AA2195-T8 was investigated using a marker insert technique (MIT). Markers made of AA5454-H32 were embedded in the path of the rotating friction stir welding (FSW) tool and their final position after welding was detected by metallographic means. Changes in material flow due to welding parameter and tool geometry variations were examined. The method provides a semiquantitative, three-dimensional view of the material transport in the welded zone. Because of the placement of markers at different positions at the weld centerline, the material transport in the longitudinal, transverse, and the vertical directions could be studied. Markers embedded in the path of the tool remain continuous after welding. The material transport, which is not symmetrical about the weld centerline, was such that the bulk of the material was transported to a position behind its original position. Superimposed on the primary motion of material in the horizontal plane of the weld is a circulation about the longitudinal axis of the weld. This circulation is found to increase with increasing weld energy.  相似文献   

8.
Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.  相似文献   

9.
1. We studied the contribution of the individual semicircular canals to the generation of horizontal and torsional eye movements in cynomolgus monkeys. Eye movements were elicited by sinusoidal rotation about a vertical (gravitational) axis at 0.2 Hz with the animals tilted in various attitudes of static forward or backward pitch. The gains of the horizontal and torsional components of the vestibuloocular reflex (VOR) were measured for each tilt position. The gains as a function of tilt position were fit with sinusoidal functions, and spatial gains and phases were determined. After control responses were recorded, the semicircular canals were plugged, animals were allowed to adapt, and the test procedure was repeated. Animals were prepared with only the anterior and posterior canals intact [vertical canal (VC) animals], with only the lateral canals intact [lateral canal (LC) animal], and with only one anterior and the contralateral posterior canals intact [right anterior and left posterior canal (RALP) animals; left anterior and right posterior canal (LARP) animals]. 2. In normal animals, the gain of the horizontal (yaw axis) velocity of the compensatory eye movements decreased as they were pitched forward or backward, and a torsional velocity appeared, reversing phase at the peak of the horizontal gain. After the anterior and posterior canals were plugged (LC animal), the horizontal component was reduced when the animal was tilted backward; the gain was zero with about -60 degrees of backward tilt. The spatial phase of the torsional component had the same characteristics. This is consistent with the fact that both responses were produced by the lateral canals, which from our results are tilted between 28 and 39 degrees above the horizontal stereotaxic plane. 3. After both lateral canals were plugged (VC animals), horizontal velocity was reduced in the upright position but increased as the animals were pitched backward relative to the axis of rotation. Torsional velocities, which were zero in the upright position in the normal animal, were now 180 degrees out of phase with the horizontal velocity. The peak values of the horizontal and torsional components were significantly shifted from the normal data and were closely aligned with each other, reaching peak values at approximately -56 degrees pitched back (-53 degrees horizontal, -58 degrees torsional). The same was true for the LARP and RALP animals; the peak values were at -59 degrees pitched back (-55 degrees horizontal, -62 degrees torsional). Likewise, in the LC animal the peak yaw and roll gains occurred at about the same angle of forward tilt, 35 degrees (30 degrees horizontal, 39 degrees torsional). Thus, in each case, the canal plugging had transformed the VOR from a compensatory to a direction-fixed response with regard to the head. Therefore there was no adaptation of the response planes of the individual canals after plugging. 4. The data were compared with eye velocity predictions of a model based on the geometric organization of the canals and their relation to a head coordinate frame. The model used the normal to the canal planes to form a nonorthogonal coordinate basis for representing eye velocity. An analysis of variance was used to define the goodness of fit of model predictions to the data. Model predictions and experimental data agreed closely for both normal animals and for the animals with canal lesions. Moreover, if horizontal and roll components from the LC and VC animals were combined, the summation overlay the response of the normal monkeys and the predictions of the model. In addition, a combination of the RALP and LARP animals predicted the response of the lateral-canal-plugged (VC) animals. 5. When operated animals were tested in light, the gains, peak values, and spatial phases of horizontal and roll eye velocity returned to the preoperative values, regardless of the type of surgery performed. This indicates that vision compensated for the lack o  相似文献   

10.
Static vestibulo-ocular brain stem syndromes characterized by skew deviation, a vertical disconjugacy of the eyes, and ocular torsion are the result of a vestibular tone imbalance in the frontal (roll) plane. Similar physiological changes in static eye position, ocular counter-roll and conjugated deviations of vertical eye position, are caused by the influence of gravity mediated by the utricles. These observations prompted our approach with the model described here: based on the known deviations of static eye position, we devised a three-dimensional mathematical model of otolith-ocular function including detailed brain stem anatomy. This model is able to explain and predict the differential effects of unilateral and bilateral peripheral or central vestibular lesions on static eye position in roll, pitch, and yaw planes.  相似文献   

11.
Dual search coils were used to record horizontal, vertical and torsional eye movement components of one eye during nystagmus caused by off-center yaw rotation (yaw centrifugation). Both normal healthy human subjects (n=7) and patients with only one functioning labyrinth (n=12) were studied in order to clarify how the concomitant linear acceleration affected the nystagmus response. Each subject was seated with head erect on the arm of a fixed-chair human centrifuge, 1 m away from the center of the rotation, and positioned to be facing along a radius; either towards (facing-in) or away from (facing-out) the center of rotation. Both yaw right and yaw left angular accelerations of 10 degrees s(-2) from 0 to 200 degrees/s were studied. During rotation a centripetal linear acceleration (increasing from 0 to 1.24xg units) was directed along the subject's naso-occipital axis resulting in a shift of the resultant angle of the gravitoinertial acceleration (GIA) of 51 degrees in the subject's pitch plane and an increase in the total GIA magnitude from 1.0 to 1.59xg. In normal subjects during the angular acceleration off-center there were, in addition to the horizontal eye velocity components, torsional and vertical eye velocities present. The magnitude of these additional components, although small, was larger than observed during similar experiments with on-center angular acceleration (Haslwanter et al. 1996), and the change in these components is attributed to the additional effect of the linear acceleration stimulation. In the pitch plane the average size of the shift of the axis of eye velocity (AEV) during the acceleration was about 8 degrees for a 51 degrees shift of the GIA (around 16% of the GIA shift) so that the AEV-GIA alignment was inadequate. There was a very marked difference in the size of the AEV shift depending on whether the person was facing-in [AEV shift forward (i.e. non-compensatory) of about 4 degrees] or facing-out [AEV shift forward (i.e. compensatory) of around 12 degrees]. The linear acceleration decreased the time constant of decay of the horizontal component of the post-rotatory nystagmus: from an average of 24.8 degrees/s facing-in to an average of 11.3 degrees/s facing-out. The linear acceleration dumps torsional eye velocity in an manner analogous to, but independent of, the dumping of horizontal eye velocity. Patients with UVD had dramatically reduced torsional eye velocities for both facing-in and facing-out headings, and there was little if any shift of the AEV in UVD patients. The relatively small effects of linear acceleration on human canal-induced nystagmus found here confirms other recent studies in humans (Fetter et al. 1996) in contrast to evidence from monkeys and emphasizes the large and important differences between humans and monkeys in otolith-canal interaction. Our results confirm the vestibular control of the axis of eye velocity of humans is essentially head-referenced whereas in monkeys that control is essentially space-referenced.  相似文献   

12.
The vestibulo-ocular reflex (VOR) was studied in nine human subjects 2-15 months after permanent surgical occlusion of one posterior semicircular canal. The stimuli used were rapid, passive, unpredictable, low-amplitude (10-20 degrees), high-acceleration (3000-4000 degrees/s2) head rotations in pitch and yaw planes. The responses measured were vertical and horizontal eye rotations, and the results were compared with those from 19 normal subjects. After unilateral occlusion of the posterior semicircular canal, the gain of the head-up pitch vertical VOR--the vertical VOR generated by excitation from only one and disfacilitation from two vertical semicircular canals--was reduced to 0.61 +/- 0.06 (normal 0.92 +/- 0.06) at a head velocity of 200 degrees/s. In contrast the gain of the head-down pitch vertical VOR--the VOR still generated by excitation from two, but disfacilitation from only one vertical semicircular canal--was within normal limits: 0.86 +/- 0.11 (normal 0.96 +/- 0.04). The gain of the horizontal VOR in response to yaw head rotations--ipsilesion 0.81 +/- 0.06 (normal 0.88 +/- 0.05) and contralesion 0.80 +/- 0.11 (normal 0.92 +/- 0.11)--was within normal limits in both directions (group means +/- two-tailed 95% confidence intervals given in each case). These results show that occlusion of just one vertical semicircular canal produces a permanent deficit of about 30% in the vertical VOR gain in response to rapid pitch head rotations in the excitatory direction of the occluded canal. This observation indicates that, in response to a stimulus in the higher dynamic range, compensation of the human VOR for the loss of excitatory input from even one vertical semicircular canal is incomplete.  相似文献   

13.
The aim of this study was to assess the influence of head position on dorsal neck muscle efficiency in the sagittal plane. Fifteen subjects participated. The EMG versus isometric extension moment of dorsal neck muscles was studied in neutral (with subject gazing on a horizontal plane), cervical flexed, and cervical extended positions. A vectorial construction was created by means of photographs to calculate the extension moment which balances measured pulling force and gravitational force in isometric conditions. The maximum extension was highest in neutral position. The EMG/moment relationship was non-linear. The ratio between the EMG and the generated moment differed significantly in the three positions (p < 0.01) and was lower in neutral position. These results demonstrate the influence of head position on dorsal neck muscle efficiency; muscles appeared most efficient in neutral position. Muscle length, depending on head position, is probably the main influencing factor.  相似文献   

14.
In two experiments the involvement of relative and fixed coordinate systems in visuomotor transformations was examined. The experimental task required the successive performance of two movements in each trial, which had to "correspond" to different visual stimuli. One kind of visual display indicated target positions by way of different horizontal positions of a vertical line on a monitor (position mode), while the other indicated movement amplitudes by way of different lengths of a horizontal line (amplitude mode). Formal analysis of variances and covariances of successive individual movements led to the conclusion that in the position mode visuomotor transformations were based on a mixture of relative and fixed coordinate systems, while in the amplitude mode only a relative coordinate system was involved. Thus, visuomotor transformations can be characterized as mixtures of different coordinate systems, and their respective weights in the mixtures are task-dependent.  相似文献   

15.
Abnormalities in the vestibulo-ocular reflex (VOR) after unilateral vestibular injury may cause symptomatic gaze instability. We compared five subjects who had unilateral vestibular lesions with normal control subjects. Gaze stability and VOR gain were measured in three axes using scleral magnetic search coils, in light and darkness, testing different planes of rotation (yaw and pitch), types of stimulus (sinusoids from 0.8 to 2.4 Hz, and transient accelerations) and methods of rotation (active and passive). Eye velocity during horizontal tests reached saturation during high-velocity/acceleration ipsilesional rotation. Rapid vertical head movements triggered anomalous torsional rotation of the eyes. Gaze instability was present even during active rotation in the light, resulting in oscillopsia. These abnormal VOR responses are a consequence of saturating nonlinearities, which limit the usefulness of frequency-domain analysis of rotational test data in describing these lesions.  相似文献   

16.
Vertical phoria (vertical vergence in the absence of binocular feedback) can be trained to vary with non-visual cues such as vertical conjugate eye position, horizontal conjugate eye position and horizontal vergence. These prior studies demonstrated a low-level association or coupling between vertical vergence and several oculomotor cues. As a test of the potential independence of multiple eye-position cues for vertical vergence, context-specific adaptation experiments were conducted in three orthogonal adapting planes (midsagittal, frontoparallel, and transverse). Four vertical disparities in each of these planes were associated with various combinations of two specific components of eye position. Vertical disparities in the plane were associated with horizontal vergence and vertical conjugate eye position; vertical disparities in the frontoparallel plane were associated with horizontal and vertical conjugate eye position; and vertical disparities in the transverse plane were associated with horizontal vergence and horizontal conjugate eye position. The results demonstrate that vertical vergence can be adapted to respond to specific combinations of two different sources of eye-position information. The results are modeled with an association matrix whose inputs are two classes of eye position and whose weighted output is vertical vergence.  相似文献   

17.
Vertical movement of the larynx during connected speech was investigated in Standard Thai - a language that has five phonologically contrastive tones. The effects of pitch, consonant phonation-type, vowel quality, tonal categories, and position in the utterance were determined. Utterance position was found to be the factor most clearly associated with variations in larynx movement. The occurrence of an overall rise-fall pattern of larynx movement distributed over utterances of varying pitch patterns leads to the conclusion that larynx height is not a principal factor regulating pitch in connected speech. Implications for models of pitch production, distinctive features for tone, theories on the historical development of tone and the role of larynx movements in the production of consonants and vowels are discussed.  相似文献   

18.
The performance of an acoustic Doppler velocimeter (ADV) was evaluated using a towing tank. Rudimentary tests of the speed response were followed by tests of yaw and pitch response. Because only a few published (and inconsistent) values of sound speed as a function of saltwater concentration were found, a simple scheme was devised using the boundary-detection feature of the ADV to obtain such values. Tests were also run in the stratified tank to verify the usability of the ADV there. The accuracy of the probe to horizontal flow fields is generally within the range of ±0.25% ± 0.25 cm∕s, and the yaw response is very nearly sinusoidal. Limited pitch-response tests suggested an indicated overspeed of some 5–10% for horizontal velocities and an indicated underspeed of 5–15% for vertical velocities. A correction scheme was developed to allow the ADV to be used in high-concentration saltwater, and its suitability was verified in homogeneous saltwater solutions. When the same scheme was used in a strongly stratified tank, however, a small overcorrection was indicated. Tests on a new probe design suggested much improved pitch response.  相似文献   

19.
Sixteen therapists each saw a volunteer client for a single counseling session. During a videotape review the clients recorded their reactions and the therapists recorded their perceptions of client reactions to each therapist intervention. Client nonverbal behaviors (speech hesitancies, vertical and horizontal head movements, arm movements, leg movements, postural shifts, adaptors, illustrators, and smiles) were examined to determine whether they were consistently associated with client reactions. The results indicated that horizontal head movements were associated with client reports of supported and therapeutic work reactions and were also associated with therapist perceptions of therapeutic work reactions; vertical head movements were associated with client reports of supported reactions; and speech hesitancies were associated with therapist perceptions of therapeutic work reactions. The results are discussed in terms of implications for practice and further research. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
The aim of this study was to develop a method of studying the effects of mandibular advancement on oropharyngeal airway dimensions in the sagittal plane in conscious, supine patients. Six white, dentate, male patients with proven obstructive sleep apnoea had sagittal fluoroscopic recordings taken in the resting supine position. Images were recorded at four frames per second as the mandible was advanced with the teeth in contact to maximum protrusion and then opened. Software in the fluoroscopic imaging system permitted measurement of the change in mandibular position together with oropharyngeal airway dimensions expressed as the narrowest dimension observable in the post-palatal and post-lingual sites. Plotting of airway dimensions during mandibular advancement enabled estimation of the degree of protrusion associated with maximal airway benefits. Progressive mandibular advancement produced variable adaptive changes in the post-palatal and post-lingual regions of the oropharynx. The amount of airway opening appeared to be related to the horizontal and vertical relationships of the face and to the dimensions of the soft palate. The changes in post-palatal and post-lingual airway dimensions were not always identical, despite the observation that both tongue and soft palate were seen to move in unison, with close contact being maintained between the two structures. Jaw opening resulted in synchronous posterior movement of both tongue and soft palate, with consequent narrowing of oropharyngeal airspace. Fluoroscopy is a simple method of assessing upper airway changes with mandibular advancement in the conscious patient. The technique should facilitate the selection of subjects for whom mandibular advancement would seem advantageous. The nature of the adaptive response is dependent on individual structural variation. It is suggested that, where artificial mandibular advancement with dental devices is considered beneficial, jaw opening should be kept to a minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号