首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We study how the number of states may change when we convert between different finite-state devices. The devices that we consider are finite automata that are one-way or two-way, deterministic or nondeterministic or alternating. We obtain several new simulation results (e.g., ann-state 2NFA can be simulated by a 1NFA with 8 n + 2 states, and by a 1AFA with n 2 states), and state-incompressibility results (e.g., in order to simulate ann-state 2DFA, a 1NFA needs /2 n–2 states, and a 2AFA needs cn states for some constant c, in general).  相似文献   

2.
We consider the deterministic and the randomized decision tree complexities for Boolean functions, denotedDC(f) andRC(f), respectively. A major open problem is how smallRC(f) can be with respect toDC(f). It is well known thatRC(f)DC(f) 0.5 for every Boolean functionf (called 0.5-exponent). On the other hand, some Boolean functionf is known to haveRC(f) = (DC(f))0.753...) (or 0.753...-exponent). It is not known whether there is a Boolean function with exponent smaller than 0.753... Likewise, no lower bound for arbitrary Boolean functions with exponent greater than 0.5 is known.Our result is a 0.51 lower bound on the exponent for everyread-once function. Read-once means that each input variable appears exactly once in the Boolean formula representing the function. To obtain this result we generalize an existing lower bound technique and combine it with restriction arguments. This result provides a lower bound ofn 0.51 on the number of positions that have to be evaluated by any randomized - pruning algorithm computing the value of any two-person zero-sum game tree withn final positions.  相似文献   

3.
The termF-cardinality of (=F-card()) is introduced whereF: n n is a partial function and is a set of partial functionsf: n n . TheF-cardinality yields a lower bound for the worst-case complexity of computingF if only functionsf can be evaluated by the underlying abstract automaton without conditional jumps. This complexity bound isindependent from the oracles available for the abstract machine. Thus it is shown that any automaton which can only apply the four basic arithmetic operations needs (n logn) worst-case time to sortn numbers; this result is even true if conditional jumps witharbitrary conditions are possible. The main result of this paper is the following: Given a total functionF: n n and a natural numberk, it is almost always possible to construct a set such that itsF-cardinality has the valuek; in addition, can be required to be closed under composition of functionsf,g . Moreover, ifF is continuous, then consists of continuous functions.  相似文献   

4.
Indecomposable local maps of one-dimensional tessellation automata are studied. The main results of this paper are the following. (1) For any alphabet containing two or more symbols and for anyn 1, there exist indecomposable scope-n local maps over . (2) If is a finite field of prime order, then a linear scope-n local map over is indecomposable if and only if its associated polynomial is an irreducible polynomial of degreen – 1 over , except for a trivial case. (3) Result (2) is no longer true if is a finite field whose order is not prime.  相似文献   

5.
On Bounding Solutions of Underdetermined Systems   总被引:1,自引:0,他引:1  
Sufficient conditions for the existence and uniqueness of a solution x* D (R n ) of Y(x) = 0 where : R n R m (m n) with C 2(D) where D R n is an open convex set and Y = (x)+ are given, and are compared with similar results due to Zhang, Li and Shen (Reliable Computing 5(1) (1999)). An algorithm for bounding zeros of f (·) is described, and numerical results for several examples are given.  相似文献   

6.
A representative system defined onn voters or propositionsi = 1,,n is a functionF: {1,0, -1} n {1,0, -1} which is monotonic (D E F(D) F(E)), unanimous (F(1,, 1) = 1), dual (F(-D) = -F(D)), and satisfies a positivity property which says that the set of all non-zero vectors in {1, 0, -1} n for whichF(D) = 0 can be partitioned into two dual subsets each of which has the property that ifD andE are in the subset thenD i+E i > 0 for somei. Representative systems can be defined recursively from the coordinate projectionsS i (D) = D i using sign functions, and in this format they are interpreted as hierarchical voting systems in which outcomes of votes in lower levels act as votes in higher levels of the system. For each positive integern, (n) is defined as the smallest positive integer such that all representative systems defined on {1, 0, -1} n can be characterized by(n) or fewer hierarchical levels. The function is nondecreasing inn, unbounded above, and satisfies(n) n–1 for alln. In addition,(n) = n–1 forn {1, 2, 3, 4}, and it is conjectured that does not continue to grow linearly asn increases.  相似文献   

7.
We consider the half-space range-reporting problem: Given a setS ofn points in d, preprocess it into a data structure, so that, given a query half-space , allk points ofS can be reported efficiently. We extend previously known static solutions to dynamic ones, supporting insertions and deletions of points ofS. For a given parameterm,n m n d/2 and an arbitrarily small positive constant , we achieveO(m 1+) space and preprocessing time, O((n/m d/2 logn+k) query time, and O(m1+n) amortized update time (d 3). We present, among others, the following applications: an O(n1+)-time algorithm for computing convex layers in 3, and an output sensitive algorithm for computing a level in an arrangements of planes in 3, whose time complexity is O((b+n) n, whereb is the size of the level.Work by the first author has been supported by National Science Foundation Grant CCR-91-06514. A preliminary version of this paper appeared in Agarwalet al. [2], which also contains the results of [20] on dynamic bichromatic closest pair and minimum spanning trees.  相似文献   

8.
Summary For a family of languages , CAL() is defined as the family of images of under nondeterministic two-way finite state transducers, while FINITE · VISIT() is the closure of under deterministic two-way finite state transducers; CAL0()= and for n0, CAL n+1()=CAL n (CAL()). For any semiAFL , if FINITE · VISIT() CAL(), then CAL n () forms a proper hierarchy and for every n0, FINITE · VISIT(CALn()) CAL n+1() FINITE · VISIT(CAL n+1()). If is a SLIP semiAFL or a weakly k-iterative full semiAFL or a semiAFL contained in any full bounded AFL, then FINITE · VISIT() CAL() and in the last two cases, FINITE · VISIT(). If is a substitution closed full principal semiAFL and FINITE · VISIT(), then FINITE · VISIT() CAL(). If is a substitution closed full principal semiAFL generated by a language without an infinite regular set and 1 is a full semiAFL, then is contained in CALm(1) if and only if it is contained in 1. Among the applications of these results are the following. For the following families , CAL n () forms a proper hierarchy: =INDEXED, =ETOL, and any semiAFL contained in CF. The family CF is incomparable with CAL m (NESA) where NESA is the family of one-way nonerasing stack languages and INDEXED is incomparable with CAL m (STACK) where STACK is the family of one-way stack languages.This work was supported in part by the National Science Foundation under Grants No. DCR74-15091 and MCS-78-04725  相似文献   

9.
LetB be a Banach space ofR n valued continuous functions on [0, ) withfB. Consider the nonlinear Volterra integral equation (*)x(t)+ o t K(t,s,x(s))ds. We use the implicit function theorem to give sufficient conditions onB andK (t,s,x) for the existence of a unique solutionxB to (*) for eachf B with f B sufficiently small. Moreover, there is a constantM>0 independent off with MfB.Part of this work was done while the author was visiting at Wright State University.  相似文献   

10.
Dushnik and Miller defined the dimension of a partially ordered setX, DimX, as the minimum number of linear extensions ofX whose intersection is the partial ordering onX. The concept of dimension for a partially ordered set has applications to preference structures and the theory of measurement. Hiraguchi proved that DimX [|X|/2] when |X| 4. Bogart, Trotter, and Kimble gave a forbidden subposet characterization of Hiraguchi's inequality by constructing for eachn 2 the minimum collection n of posets such that if [|X|/2] =n 2, then DimX < n unlessX contains one of the posets in n . Recently Trotter gave a simple proof of Hiraguchi's inequality based on the following theorem. IfA is an antichain ofX and |X – A| =n 2, then DimX n. In this paper we give a forbidden subposet characterization of this last inequality.  相似文献   

11.
Let Sp(d) denote the class of spectra of prenex first-order sentences (with equality) withd universal quantifiers. Let NRAM(T(n)) denote the class of sets (of positive integers) accepted by Nondeterministic Random Access Machines, NRAM, (with successor as the only arithmetical operation) in timeO(T(n)) wheren is the input integer. We prove Sp(d) = NRAM(n d ) ford 2. Moreover, each spectrum of Sp(d) is the spectrum of ad-universal-quantifier sentence with relation and function symbols of arityd only. Similar results hold for generalized spectra and alternating spectra.  相似文献   

12.
The simple rational partial functions accepted by generalized sequential machines are shown to coincide with the compositions P –1 , where P consists of the prefix codings. The rational functions accepted by generalized sequential machines are proved to coincide with the compositions P –1 , where is the family of endmarkers and is the family of removals of endmarkers. (The compositions are read from left to right). We also show that P –1 is the family of the subsequential functions.This work was partially supported by the Esprit Basic Research Action Working Group No. 3166 ASMICS, the CNRS and the Academy of Finland  相似文献   

13.
This paper presents algorithms for multiterminal net channel routing where multiple interconnect layers are available. Major improvements are possible if wires are able to overlap, and our generalized main algorithm allows overlap, but only on everyKth (K 2) layer. Our algorithm will, for a problem with densityd onL layers,L K + 3,provably use at most three tracks more than optimal: (d + 1)/L/K + 2 tracks, compared with the lower bound of d/L/K. Our algorithm is simple, has few vias, tends to minimize wire length, and could be used if different layers have different grid sizes. Finally, we extend our algorithm in order to obtain improved results for adjacent (K = 1) overlap: (d + 2)/2L/3 + 5 forL 7.This work was supported by the Semiconductor Research Corporation under Contract 83-01-035, by a grant from the General Electric Corporation, and by a grant at the University of the Saarland.  相似文献   

14.
A theory is developed for the construction of carry-save networks with minimal delay, using a given collection of carry-save adders each of which may receive inputs and produce outputs using several different representation standards.The construction of some new carry-save adders is described. Using these carry-save adders optimally, as prescribed by the above theory, we get {, , }-circuits of depth 3.48 log2 n and {, , }-circuits of depth 4.95 log2 n for the carry-save addition ofn numbers of arbitrary length. As a consequence we get multiplication circuits of the same depth. These circuits put out two numbers whose sum is the result of the multiplication. If a single output number is required then the depth of the multiplication circuits increases respectively to 4.48 log2 n and 5.95 log2 n.We also get {, , }-formulae of sizeO (n 3.13) and {, }-formulae of sizeO (n 4.57) for all the output bits of a carry-save addition ofn numbers. As a consequence we get formulae of the same size for the majority function and many other symmetric Boolean functions.  相似文献   

15.
Let a semialgebraic set be given by a quantifier-free formula of the first-order theory of real closed fields withk atomic subformulae of the typef i0 for 1ik, where the polynomialsf i[X 1,...,X n] have degrees deg(f i)<d and the absolute value of each (integer) coefficient off i is at most 2M. An algorithm is exhibited which counts the number of connected components of the semialgebraic set in time (M (kd)n 20)O (1). Moreover, the algorithm allows us to determine whether any pair of points from the set are situated in the same connected component.  相似文献   

16.
Suppose a directed graph has its arcs stored in secondary memory, and we wish to compute its transitive closure, also storing the result in secondary memory. We assume that an amount of main memory capable of holdings values is available, and thats lies betweenn, the number of nodes of the graph, ande, the number of arcs. The cost measure we use for algorithms is theI/O complexity of Kung and Hong, where we count 1 every time a value is moved into main memory from secondary memory, or vice versa.In the dense case, wheree is close ton 2, we show that I/O equal toO(n 3/s) is sufficient to compute the transitive closure of ann-node graph, using main memory of sizes. Moreover, it is necessary for any algorithm that is standard, in a sense to be defined precisely in the paper. Roughly, standard means that paths are constructed only by concatenating arcs and previously discovered paths. For the sparse case, we show that I/O equal toO(n 2e/s) is sufficient, although the algorithm we propose meets our definition of standard only if the underlying graph is acyclic. We also show that(n 2e/s) is necessary for any standard algorithm in the sparse case. That settles the I/O complexity of the sparse/acyclic case, for standard algorithms. It is unknown whether this complexity can be achieved in the sparse, cyclic case, by a standard algorithm, and it is unknown whether the bound can be beaten by nonstandard algorithms.We then consider a special kind of standard algorithm, in which paths are constructed only by concatenating arcs and old paths, never by concatenating two old paths. This restriction seems essential if we are to take advantage of sparseness. Unfortunately, we show that almost another factor ofn I/O is necessary. That is, there is an algorithm in this class using I/OO(n 3e/s) for arbitrary sparse graphs, including cyclic ones. Moreover, every algorithm in the restricted class must use(n 3e/s/log3 n) I/O, on some cyclic graphs.The work of this author was partially supported by NSF grant IRI-87-22886, IBM contract 476816, Air Force grant AFOSR-88-0266 and a Guggenheim fellowship.  相似文献   

17.
When verifying concurrent systems described by transition systems, state explosion is one of the most serious problems. If quantitative temporal information (expressed by clock ticks) is considered, state explosion is even more serious. We present a notion of abstraction of transition systems, where the abstraction is driven by the formulae of a quantitative temporal logic, called qu-mu-calculus, defined in the paper. The abstraction is based on a notion of bisimulation equivalence, called , n-equivalence, where is a set of actions and n is a natural number. It is proved that two transition systems are , n-equivalent iff they give the same truth value to all qu-mu-calculus formulae such that the actions occurring in the modal operators are contained in , and with time constraints whose values are less than or equal to n. We present a non-standard (abstract) semantics for a timed process algebra able to produce reduced transition systems for checking formulae. The abstract semantics, parametric with respect to a set of actions and a natural number n, produces a reduced transition system , n-equivalent to the standard one. A transformational method is also defined, by means of which it is possible to syntactically transform a program into a smaller one, still preserving , n-equivalence.  相似文献   

18.
Given a finite setE R n, the problem is to find clusters (or subsets of similar points inE) and at the same time to find the most typical elements of this set. An original mathematical formulation is given to the problem. The proposed algorithm operates on groups of points, called samplings (samplings may be called multiple centers or cores); these samplings adapt and evolve into interesting clusters. Compared with other clustering algorithms, this algorithm requires less machine time and storage. We provide some propositions about nonprobabilistic convergence and a sufficient condition which ensures the decrease of the criterion. Some computational experiments are presented.  相似文献   

19.
Thek-Delaunay tree extends the Delaunay tree introduced in [1], and [2]. It is a hierarchical data structure that allows the semidynamic construction of the higher-order Voronoi diagrams of a finite set ofn points in any dimension. In this paper we prove that a randomized construction of thek-Delaunay tree, and thus of all the orderk Voronoi diagrams, can be done inO(n logn+k 3n) expected time and O(k2n) expected storage in the plane, which is asymptotically optimal for fixedk. Our algorithm extends tod-dimensional space with expected time complexityO(k (d+1)/2+1 n (d+1)/2) and space complexityO(k (d+1)/2 n (d+1)/2). The algorithm is simple and experimental results are given.This work has been supported in part by the ESPRIT Basic Research Action No. 3075 (ALCOM).  相似文献   

20.
Yang Cai  M. C. Kong 《Algorithmica》1996,15(6):572-599
In this paper we study the problem of scheduling a set of periodic tasks nonpreemptively in hard-real-time systems, where it is critical for all requests of the tasks to be processed in time. A taskT is characterized by itsarrival time A, itsperiod P, and itsexecution time C. Starting fromA, a new request ofT arrives in everyP units of time, requestingC units of processing time, and itsdeadline coincides with the arrival of the next request ofT. All requests must be processed nonpreemptively to meet their corresponding deadlines. We show that the problem of testing the feasibility of a given task set {T 1,T 2,,T n} satisfyingP 1+1=ki pi, wherek i; is an integer 1 for 1i n–1, on a single processor is NP-hard in the strong sense, even if all tasks have the same arrival time. For task sets satisfyingP i+1=K Pi, whereK is an integer 2 for 1 i n–1 and all tasks have the same arrival time, we present linear-time (in the number of requests) optimal scheduling algorithms as well as linear-time (in the number of tasks, i.e.,n) algorithms for testing feasibility in both uniprocessor and multiprocessor systems. We also extend our results to more general task sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号