首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a detailed numerical investigation of the influence of re-organized shock waves on the flow separation for a highly-loaded transonic compressor cascade. The boundary layer suction (BLS) was used to control the location and strength of shock waves, with the aspirated slot locating at 49% chord, where is just downstream of the impingement point of shock wave at the leading edge. The numerical simulation is based on NUMECA, a commercial software, where the cell-centered control volume approach with third-order spatial accuracy is used to solve the 3-D Reynolds-averaged Navier-Stokes equations under the Cartesian coordinate system. Several conclusions can be made through the observation of the numerical results. (1) Multiple shock waves in cascade passage leaded the velocity deficits of boundary layer on suction surface downstream of shock wave, resulting in seriously separated flow on the suction side of blade, especially when the front shock wave is much stronger than the rest of the shocks. (2) BLS with small mass flow rate can not effectively improve the boundary layer. When the impingement point of oblique shock wave coming from cascade leading edge is bled to downstream of the passage shock wave by BLS, the boundary layer flow is greatly improved. However, if the BLS mass flow rate exceeds a critical value (1.2%), the boundary layer downstream of shock wave would separate from suction surface. (3) At the blade mid-span, the aerodynamic performance of compressor blade is improved as BLS mass flow rate increases. The optimum BLS is about 1.2%. Compared with the baseline case, the BLS with flow rate of 1.2% increases the total pressure recovery coefficient by 12%, and decreases diffusion factor by 18% and deviation angle to 7 ° while keeping the pressure rise constant. (4) The three dimensional flow structure of the compressor cascade ranged from 25% span to 75% span was improved greatly with the 1.2% BLS flow rate. However it could not control the development of the corner boundary layer effectively.  相似文献   

2.
Due to corner separation and other complex three-dimensional flows existing in the highly loaded stator, which influences the fan performance significantly, highly loaded stator blades of a transonic fan with a maximum camber angle of 57° were studied in this paper and sector cascade experiment was adopted. In order to get the stator aerodynamic parameters as realistic as possible and conduct the experiment without the existence of rotor, an adjustable guide vane was designed to simulate the velocity magnitude and direction of the stator inlet flow. Results show that the adjustable guide vane can simulate the rotor outlet velocity direction and magnitude in most span range. The deviation angle is positive and the maximum value is nearly 21° because the severe separation is at 27% span. Corner separation exists on both pressure side and suction side and the location of separation initiation is determined. Finally, the stator blades were redesigned with some suction slots on the suction side. Experiment results show that the suction slots change the flow field structure, increase the capability of flow turning, and decrease the flow loss.  相似文献   

3.
田夫  朱东保  钟兢军 《节能技术》2005,23(4):302-305
不同周向和轴向位置的压气机叶栅上安装1/2轴向弦长翼刀的叶栅出口流场测量结果表明,两种方案的叶栅总损失随翼刀周向位置变化的总体趋势是翼刀靠近压力面时叶栅总损失降低。翼刀安装在流道前半部的最佳周向位置是距离吸力面60%相对节距处;安装在流道后半部的翼刀最佳周向位置是距离吸力面80%相对节距处。通过对比初步探讨了翼刀减小二次流损失的机理:一方面通过降低流道内端壁附面层内横向压力梯度,减弱低能流体向吸力面/壁角区的堆积;另一方面是通过产生的反向翼刀涡限制马蹄涡的压力面分支发展,从而减小通道涡的尺寸和强度。  相似文献   

4.
An experimental investigation of effects of a kind of streamwise-grooved blade on the unsteady flow field at an exit of an axial-flow fan was performed. The flow field at 25% chord downstream from the trailing edge at hub was measured using a fast-response five-hole pressure probe at different mass-flow conditions. The unsteady flow of the grooved blades was compared with that of the smooth blades. The measurement results indicate that: (1) the grooved blades restrain the velocity fluctuation and the pressure fluctuation by modulating the blade boundary layers, which contributes to the flow loss reduction in the hub region and in the rotor wake region at the design condition; (2) the stream-wise grooves play an important role in restraining the radial migration in the blade boundary layer and abating the tip flow mixing, which contributes to the flow loss reduction in the tip region at the design condition; (3) at the near stall condition, the grooved surface can not reduce the flow loss, even increase the loss nearby when the separation happens in the blade boundary layer.  相似文献   

5.
为了揭示叶根倒角对跨音速转子的气动性能影响规律,以NASA的Rotor67转子为研究对象,采用数值方法研究了叶根倒角对跨音速轴流压气机角区分离和工作裕度的影响机制。结果表明:叶根倒角的引入改善了叶片倒角区前缘附近的来流攻角适应性及该区域的叶型几何曲率分布特征,进而提升叶根吸力面的抗分离能力。带有倒角结构的转子叶片在其叶根倒角未覆盖区的叶型中后段周向压力梯度大于原型叶片,有利于克服气流沿吸力面流动时产生的离心力,进而抑制了尾缘附近的分离现象,使得该区域效率提升了3.9%以上。倒角的存在借助于径向平衡约束,重塑了叶尖区域的沿程叶表静压分布,并减小了尖区的入口轴向速度,直接导致叶尖区域主流流体的通流能力明显削弱,并诱发相对更强的间隙泄漏流,从而使得跨音转子提前发生失速,压气机工作裕度降低了19%以上。  相似文献   

6.
This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.  相似文献   

7.
针对某600 MW汽轮机高压缸的某一冲动级,进行了改变级间根部吸漏气量的空气透平模拟级试验和数值计算两方面的研究,分析了正弯静叶级级间根部吸漏气的状况及其对级气动性能的影响.结果表明:主流的抽吸作用对级间叶根汽封间隙中流动的影响很大;冲动式级的级间根部吸气会导致级效率严重下降;级间根部漏气时,随着漏气量的增加,级效率呈现先升高后降低的规律.  相似文献   

8.
It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This paper presents a detailed experimental investigation of effects of distributed riblet on the flow field of an axial compressor iso- lated-rotor stage. The research was performed in a large-scale facility respectively with two configurations, in- eluding grooved hub, and grooved surface on both hub and partial suction surface. The riblet film is rectangle grooved type with a height of 0.1 ram. The flow field at 10% chord downstream from the cascade trailing edge was measured using a mini five-hole pressure probe and a total pressure probe. The testing was conducted at sev- eral operational points under two reduced rotational speeds. Stagnation pressure loss in rotational frame was cal- culated and compared with the control test in which a smooth film was applied to the corresponding position. Results show that with the grooved hub configuration at the design operation point of the lower rotational speed, the riblet film provides an obvious improvement of a 48% reduction of total pressure loss in rotational frame. Also, a distinct weaken hub comer vortex was identified. In the meantime, there exists a deviation of flow angle about 5 degrees at 20%-80% span which previously was not considered to be the affected region.  相似文献   

9.
使用拓扑结构分析方法对某型压气机静叶栅的直叶片与弯叶片数值计算,对壁面分离流结构进行了分析研究,发现弯叶片对壁面流线拓扑结构和分离流结构影响明显。给出了直叶栅吸力面,下端壁角区流场的拓扑结构,并证明数值计算结果的奇点总数满足环形叶栅壁面(包括叶片表面和上、下端壁表面)拓扑准则。图10参4  相似文献   

10.
用CFD研究涡轮静叶栅的二次流损失   总被引:2,自引:1,他引:1  
利用CFD软件Fluent对大转折角涡轮叶栅三维流场进行了数值模拟。采用静叶栅前移动的圆柱列替代上游动叶,发现圆柱尾迹进入叶栅流道的位置不同,对叶栅总压损失有较大影响。同时,通道内逐渐增大的横向压力梯度对二次涡发展产生了显著的影响,引起沿流向叶栅总压损失的急剧增大,认为叶高的减小会极大提高叶栅的二次流损失。  相似文献   

11.
In order to examine the fundamental characteristics of corner separation in a decelerating cascade flow,the experimental apparatus was made and separations around a NACA65 blade in a decelerating channel flow were examined.Two-dimensional calculations show that the NACA65 cascade flow that has 45 deg.of turning,1.24 of solidity and 17 deg.of stagger angle is equivalent to the channel flow that has 14 deg.of stagger angle in terms of pitchwise blade force.Experimental investigation by five-hole probe shows that the accumulations of low energy fluid can be seen around the corner part and the overturning flow due to the secondary flow exists.And,as the periodicity of the blade wake in a pitchwise direction is comparably good,the wake of this channel flow is similar to the wake of the cascade flow for two pitch portion.PIV measurement results shows that a vortex pattern can be seen in the momentary streamline on the suction surface of the blade and in the averaged streamline on the perpendicular to both the suction surface and the endwall.  相似文献   

12.
An experimental investigation was made into three-dimensional separated flow and the vortices within the flow separation in a decelerating channel flow generated by the suction from a porous side wall. The flows along the side and bottom walls were visualized by the surface tuft method. The turbulent internal flow was measured by the split-film probe to investigate the turbulent flow including the reverse flow. In the flow visualization for the strong decelerating flow (the suction flow ratio:0.8), two typical flow patterns appear alternatively. One is that the flow near the bottom wall separates more upstream than the flow near the top wall and a clockwise vortex can be seen in the separation region. Another is the reversal flow pattern with a counterclockwise vortex. By the turbulent flow measurement using the split-film probe, two peaks of turbulence level are observed for the strong decelerating flow case. These peaks can be related with two flow patterns mentioned above.  相似文献   

13.
对大转折角涡轮静叶栅三维流动进行了数值模拟,并详细分析了叶栅沿流向各截面二次流及叶栅的气动特性.结果表明:由压力面向吸力面运动的二次流强度沿流向逐渐增大,引起吸力面附近的端壁附面层不断壮大且在后部卷起,并导致沿叶高总压损失系数和沿叶高出口气流角的剧烈变化.通过对不同高度的叶栅进行比较发现,叶高的减小会扩大二次流所占叶高区域,从而导致叶栅的二次流损失急剧增加.  相似文献   

14.
In this study,we attempt the analysis of the passage flow in the centrifugal impeller using FEM with/without the turbulence model,and compare this result with the experimental result.The turbulence model is the low Reynolds k-ε model proposed by Chien.We use the GSMAC method for the Reynolds averaged Navier-Stokes equations,the Euler explicit method for the transport equations of the turbulent kinetic energy and the dissipation rate.All equations are discretized by the Galerkin‘s method.At the midpassage of the centrifugal impeller,the passagewise velocity component tends to increase in the pressure-to-suction direction,and the other component toward the pressure surface tends to be large in the region of the middle blade-to-blade to the hub side.The tip leakages appear around the region of the middle blade-to-blade near the casing together with the secondary flow toward the suction surface.These phenomena correspond with the experimental result,qualitatively.  相似文献   

15.
端壁附面层抽吸对扩压叶栅内分离结构的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
根据拓扑学原理,提出了适合叶栅表面的奇点拓扑准则,并针对某压气机大折转角子午扩张型导叶的流场进行了数值模拟。为了比较端壁抽吸对叶片径向二次流的影响,分别对展弦比为2.53和0.3两套叶栅进行端壁抽吸,其中上下端壁的抽吸量均为1%。针对计算结果,利用叶栅表面奇点法则分析了附面层抽吸前后叶栅内分离形态的变化,给出了其拓扑。结果表明:靠近吸力面的端壁附面层抽吸改变了流场的分离性态,遏止了端壁角区的分离,并延迟和减小了吸力面的分离,从而在大部分叶高上使得叶片损失减小且沿径向分布趋于均匀.  相似文献   

16.
为研究间隙变化对轴流压气机转子近失速工况下叶顶流场结构的影响,以轴流压气机转子Rotor37为研究对象,对其叶顶流场进行定常和非定常的数值模拟。计算结果表明:随着叶顶间隙的减小,压气机的总压比和等熵效率均有所提高,稳定运行范围扩大;2倍设计间隙下,叶尖泄漏涡经激波作用后发生膨胀破碎,堵塞来流通道,诱发压气机堵塞失速;0.5倍设计间隙下,吸力面流动分离加剧,发生回流,部分回流与来流在压力面前缘上游发生干涉,进口堵塞加剧,致使部分来流从前缘溢出,导致压气机叶尖失速;不同间隙下压气机失速过程的主导因素不同,大间隙下失速由叶尖泄漏涡破碎的非定常波动引起,小间隙下失速主要由流动分离引发的周期性前缘溢流所主导。  相似文献   

17.
叶轮是决定离心压气机气动性能的关键因素之一,在保持叶轮设计参数不变的条件下,调整叶根倒角的分布,对比分析叶根倒角对压气机性能的影响.利用Numeca软件对跨声速离心压气机进行全三维稳态流动数值模拟方案分为等半径倒角与变半径倒角两种.结果表明:主叶片后半弦长的倒角是决定压气机气动性能的关键性因素,尾缘倒角比前缘更敏感;根...  相似文献   

18.
为了进一步理解压气机叶栅通道内的非定常流动结构,采用大涡模拟(LES)方法研究了来流附面层厚度和稠度变化对叶栅通道内涡系结构及总压损失系数的影响。研究表明:来流附面层增厚将导致端壁处流体的轴向动能降低,使得马蹄涡压力面分支更早地流向相邻叶片吸力面;来流附面层越厚,通道涡在叶栅尾缘沿展向抬升的高度越高,角区分离的范围也越大;叶栅的总压损失随附面层增厚而增加,附面层损失增加显著,二次流损失有所增大;稠度较低时叶栅吸力面表面存在分离,会对通道涡及角区分离产生影响;稠度增大,横向压力梯度减小,叶栅流道的速度分布更均匀,通道涡的强度和尺度减小,角区分离的范围减小;稠度增大使叶表不再分离时,总压损失显著降低,但稠度继续增大会使气流与叶片表面的摩擦损失增加。  相似文献   

19.
To reveal the unsteady flow characteristics of a vaneless counter-rotating turbine (VCRT), a three-dimensional, viscous, unsteady computational fluid dynamics (CFD) analysis was performed. The results show that unsteady simulation is superior to steady simulation because more flow characteristics can be obtained. The unsteady effects in upstream airfoil rows are weaker than those in downstream airfoil rows in the VCRT. The static pressure distribution along the span in the pressure surface of a high pressure turbine stator is more uniform than that in the suction surface. The static pressure distributions along the span in the pressure surfaces and the suction surfaces of a high pressure turbine rotor and a low pressure turbine rotor are all uneven. The numerical results also indicate that the load of a high pressure turbine rotor will increase with the increase of the span. The deviation is very big between the direction of air flow at the outlet of a high pressure turbine rotor and the axial direction. A similar result can also be obtained in the outlet of a low pressure turbine rotor. This means that the specific work of a high pressure turbine rotor and a low pressure turbine rotor is big enough to reach the design objectives. Translated from Journal of Engineering Thermophysics, 2006, 27(1): 35–38 [译自: 工程热物理学报]  相似文献   

20.
The spontaneous nucleation flow in turbine cascade was numerically studied. The model was implemented within a full Navier–Stokes viscous flow solution procedure and the process of condensation was calculated by the quadrature method of moments that shows good accuracy with very broad size distributions. Results were presented for viscous and inviscous flow, showing the influence of boundary layer separation and wake vortices on spontaneous nucleation. The results show that the degree of flow separation in wet steam flow is greater than that in superheated steam flow due to condensation shock and that the loss cannot be neglected. Furthermore, the impact of boundary layer separation and wake vortices on velocity profiles and its implications for profile loss were considered. The calculations showed that layer separation and wake vortices influence nucleation rate, leading to different droplet distributions. A method for controlling homogeneous nucleation and for reducing degree of flow separation in high-speed transonic wet steam flow was presented. The liquid phase parameter distribution is sensitive to the suction side profile of turbine cascade, which impacts the nucleation rate distribution leading to different droplet distributions and affects the degree of flow separation. The numerical study provides a practical design method for turbine blade to reduce wetness losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号