首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal structures of complexes of a D30N mutant of feline immunodeficiency virus protease (FIV PR) complexed with a statine-based inhibitor (LP-149), as well as with a substrate based on a modification of this inhibitor (LP-149S), have been solved and refined at resolutions of 2.0 and 1.85 A, respectively. Both the inhibitor and the substrate are bound in the active site of the mutant protease in a similar mode, which also resembles the mode of binding of LP-149 to the native protease. The carbonyl oxygen of the scissile bond in the substrate is not hydrated and is located within the distance of a hydrogen bond to an amido nitrogen atom from one of the two asparagines in the active site of the enzyme. The nitrogen atom of the scissile bond is 3.25 A from the conserved water molecule (Wat301). A model of a tetrahedral intermediate bound to the active site of the native enzyme was built by considering the interactions observed in all three crystal structures of FIV PR. Molecular dynamics simulations of this model bound to native wild-type FIV PR were carried out, to investigate the final stages of the catalytic mechanism of aspartic proteases.  相似文献   

2.
The proteases expressed by the HIV-1 and HIV-2 viruses process the polyproteins encoded by the viral genomes into the mature proteins required for virion replication and assembly. Eight analogs of haloperidol have been synthesized that cause time-dependent inactivation of the HIV-1 protease and, in six cases, HIV-2 protease. The IC50 values for the analogues are comparable to that of haloperidol itself. Enzyme inactivation is due to the presence of an epoxide in two of the analogues and carbonyl-conjugated double or triple bonds in the others. Irreversible inactivation is confirmed by the failure to recover activity when one of the inhibitors is removed from the medium. At pH 8.0, the agents inactivate the HIV-1 protease 4-80 times more rapidly than the HIV-2 protease. Faster inactivation of the HIV-1 protease is consistent with alkylation of cysteine residues because the HIV-1 protease has four such residues whereas the HIV-2 protease has none. Inactivation of the HIV-2 protease requires modification of non-cysteine residues. The similarities in the rates of inactivation of the HIV-2 protease by six agents that have intrinsically different reactivities toward nucleophiles suggest that the rate-limiting step in the inactivation process is not the alkylation reaction itself. At least five of the agents inhibit polyprotein processing in an ex vivo cell assay system, but they are also toxic to the cells.  相似文献   

3.
4.
Thymidylate synthase (TS) is a long-standing target for anticancer drugs and is of interest for its rich mechanistic features. The enzyme catalyzes the conversion of dUMP to dTMP using the co-enzyme methylenetetrahydrofolate, and is perhaps the best studied of enzymes that catalyze carbon-carbon bond formation. Arg 126 is found in all TSs but forms only 1 of 13 hydrogen bonds to dUMP during catalysis, and just one of seven to the phosphate group alone. Despite this, when Arg 126 of TS from Escherichia coli was changed to glutamate (R126E), the resulting protein had kcat reduced 2000-fold and Km reduced 600-fold. The crystal structure of R126E was determined under two conditions--in the absence of bound ligand (2.4 A resolution), and with dUMP and the antifolate CB3717 (2.2 A resolution). The first crystals, which did not contain dUMP despite its presence in the crystallization drop, displayed Glu 126 in a position to sterically and electrostatically interfere with binding of the dUMP phosphate. The second crystals contained both dUMP and CB3717 in the active site, but Glu 126 formed three hydrogen bonds to nearby residues (two through water) and was in a position that partially overlapped with the normal phosphate binding site, resulting in a approximately 1 A shift in the phosphate group. Interestingly, the protein displayed the typical ligand-induced conformational change, and the covalent bond to Cys 146 was present in one of the protein's two active sites.  相似文献   

5.
The long-term therapeutic benefit of HIV antiretroviral therapy is still threatened by drug-resistant variants. Mutations in the S1 subsite of the protease are the primary cause for the loss of sensitivity toward many HIV protease inhibitors, including our first-generation cyclic urea-based inhibitors DMP323 and DMP450. We now report the structures of the three active-site mutant proteases V82F, I84V, and V82F/I84V in complex with XV638 and SD146, two P2 analogues of DMP323 that are 8-fold more potent against the wild type and are able to inhibit a broad panel of drug-resistant variants [Jadhav, P. K., et al. (1997) J. Med. Chem. 40, 181-191]. The increased efficacy of XV638 and SD146 is due primarily to an increase in P2-S2 interactions: 30-40% more van der Waals contacts and two to four additional hydrogen bonds. Furthermore, because these new interactions do not perturb other subsites in the protease, it appears that the large complementary surface areas of their P2 substituents compensate for the loss of P1-S1 interactions and reduce the probability of selecting for drug-resistant variants.  相似文献   

6.
We analyzed the effect of the vacuolar H(+)-ATPase inhibitor bafilomycin A1 (bafA1) on the processing of beta-amyloid precursor protein (beta APP). In kidney 293 cells stably transfected with the wild-type beta APP cDNA, bafA1 caused a stabilization of mature beta APP and its 10-kDa COOH-terminal fragment. Moreover, it caused a 2-3-fold increase in secretion of soluble APP and amyloid-beta protein (A beta). Interestingly, bafA1 treatment of cells transfected with a mutant beta APP isoform that occurs in a Swedish kindred with familial Alzheimer's disease resulted in a decrease of A beta production and no increase of soluble APP secretion. Identical results were obtained when the effect of bafA1 was analyzed on fibroblasts derived from affected versus unaffected members of the Swedish family. These data demonstrate a differential effect of bafA1 on the production of A beta derived from wild-type or Swedish mutant beta APP. Radiosequencing of A beta derived from bafA1-treated cells expressing wild-type beta APP revealed a marked increase of A beta peptides starting at amino acids phenylalanine 4 and valine -3 and a relative decrease of A beta molecules beginning at the typical NH2 terminus of aspartate 1. Cells transfected with the Swedish mutation and treated with bafA1 did not produce these alternative A beta peptides, so that bafA1 treatment resulted in a decrease of A beta starting at aspartate 1. Our data indicate that multiple proteases are able to cleave A beta at or near its NH2 terminus. Inhibition of the protease cleaving at aspartate 1 by bafA1 and perhaps other similar agents can result in an increase of alternatively cleaved peptides.  相似文献   

7.
We have constructed mutants of chymotrypsin inhibitor 2 with short glutamine repeats inserted into its inhibitory loop. These mutants oligomerize when expressed in Escherichia coli. The dimer of a mutant with four glutamines now has been crystallized, and its structure has been solved by molecular replacement by using the wild-type monomer as a search model. The structure of each half of the dimer is found to be the same as that of the wild-type monomer, except around the glutamine insertion. It was proposed that the components of the oligomers are held together by hydrogen bonds between the main-chain and side-chain amides of the glutamine repeats. Instead, they appear to form by swapping domains on folding in E. coli, and the glutamine repeats connecting the components of the dimers are disordered.  相似文献   

8.
9.
Crystal structures of adenine-specific Ustilago sphaerogena ribonuclease U2 complexed with the substrate analogues, d(ApG), d(ApGpG), and d(ApGpC), with the intermediate analogue, 2',3'-O-isopropylidene-adenosine, and with the product, 3'-AMP, have been determined. In each structure, the adenine base is recognized by the enzyme with four hydrogen-bonds. In the substrate analogue structures, the second base of guanine is sandwiched between His 101 and Tyr 107 side-chains, and forms two hydrogen-bonds with Tyr 107 O and Asp 108 O delta 1 atoms. The third base of the trinucleotides is in van der Waals interaction with the Tyr 78 side-chain. The phosphate group between the second and third nucleosides forms two hydrogen-bonds with the side chains of Asp 37 and Tyr 78. Oxygen atoms of the scissile phosphate group are involved in interactions with catalytic residues of Tyr 39, His 41, Glu 62, Arg 85, and His 101. These interactions indicate that either His 41 or Glu 62 acts as a general base and His 101 acts as a general acid in the first step of RNA hydrolysis.  相似文献   

10.
11.
12.
Two catalytically inactive mutant forms of 1-aminocyclopropane-1-carboxylate (ACC) synthase, Y85A and K273A, were mixed in low concentrations of guanidine hydrochloride (GdnHCl). About 15% of the wild-type activity was recovered (theoretical 25% for a binomial distribution), proving that the functional unit of the enzyme is a dimer, or theoretically, a higher order oligomer. The enzyme catalyzes the conversion of S-adenosyl-L-methionine (SAM) to ACC. The value of kcat/KM is 1.2 x 10(6) M-1 s-1 at pH 8.3. Viscosity variation experiments with glycerol and sucrose as viscosogenic reagents showed that this reaction is nearly 100% diffusion controlled. The sensitivity to viscosity for the corresponding reaction of the less reactive Y233F mutant is much reduced, thus the latter reaction serves as a control for that of the wild-type enzyme. The kcat/KM vs pH profile for wild-type enzyme exhibits pKa values of 7.5 and 8.9. The former is assigned to the pKa of the alpha-amino group of SAM, while the latter corresponds to the independently determined spectrophotometric pKa of the internal aldimine. The kcat vs pH profile exhibits similar pKas, which means that the above pKa values are not perturbed in the Michaelis complex. The phenolic hydroxyl group of Tyr233 forms a hydrogen bond to the 3'-O- of PLP. The spectral and kinetic pKa (kcat/KM) values of the Y233F mutant are not identical (spectral 10.2, kinetic 8.7). A model that accounts quantitatively for these data posits two parallel pathways to the external aldimine for this mutant, the minor one has the alpha-amino group free base form of SAM reacting with the protonated imine form of the enzyme with kcat/KM approximately 6.0 x 10(3) M-1 s-1, while the major pathway involves reaction of the aldehyde form of PLP with SAM with kcat/KM approximately 7.0 x 10(5) M-1 s-1. The spectral pKa is defined only by the less reactive species.  相似文献   

13.
The untranslated leader region of the human immunodeficiency virus (HIV) RNA genome contains multiple regulatory elements that fold into stable hairpin structures. Because extensive secondary structure can block the scanning of ribosomes, an alternative mechanism for HIV translation seems feasible. To study the mechanism of HIV-1 mRNA translation, a start codon was introduced in the leader region that will usurp scanning ribosomes. This upstream AUG mutation (uAUG) inhibited HIV gene expression, indicating that HIV-1 mRNA translation occurs via the regular scanning mechanism. Revertant viruses with increased replication capacity were obtained upon prolonged culturing of the mutant virus. To our surprise, the introduced start codon had not been inactivated in these phenotypic revertants. Instead, these revertants contain additional mutations in the envelope (Env) protein that stimulated HIV-1 replication. These second-site Env mutations did not specifically overcome the gene expression defect of the uAUG mutant, as the replication capacity of other HIV-1 mutants with an unrelated defect could also be improved. The uAUG construct appears to be a unique tool in forced HIV-1 adaptation studies because the deleterious uAUG mutation is stably maintained in the progeny, yielding phenotypic revertants with second-site mutations elsewhere in the viral genome.  相似文献   

14.
Analysis of transgenic mice expressing familial amyotrophic lateral sclerosis (ALS)-linked mutations in the enzyme superoxide dismutase (SOD1) have shown that motor neuron death arises from a mutant-mediated toxic property or properties. In testing the disease mechanism, both elimination and elevation of wild-type SOD1 were found to have no effect on mutant-mediated disease, which demonstrates that the use of SOD mimetics is unlikely to be an effective therapy and raises the question of whether toxicity arises from superoxide-mediated oxidative stress. Aggregates containing SOD1 were common to disease caused by different mutants, implying that coaggregation of an unidentified essential component or components or aberrant catalysis by misfolded mutants underlies a portion of mutant-mediated toxicity.  相似文献   

15.
16.
BACKGROUND: There is increasing evidence that the T-cell reactivity to environmental allergens underlying expression of allergic disease in adulthood, develops initially during childhood. However, there is little information available on the kinetics of these early responses, or on the patterns of cytokine production during this period. OBJECTIVE: The purpose of this study was twofold: to obtain further information on the reported differences between responses to food versus inhalant allergens during early childhood, and to ascertain the age-range over which T-cell responses to inhalant allergens become polarized towards the TH2 cytokine profile, in potentially atopic children. METHODS: In vitro cytokine responses to house dust mite (HDM) and egg (OVA) were assessed by semiquantitative RT-PCR in panels of 2- and 5-year-old children and adults; lymphoproliferative responses to OVA were subjected to epitope analysis. RESULTS: At age 2 years IL-4/IL-5 responses to HDM grouped with positive atopic family history, and by age 5 years cytokine responses correlated strongly with individual SPT reactivity to HDM. In contrast, OVA responses were restricted to weak and transient IL-5 signals in the 2-year-old family history positive group. Lymphoproliferation assays performed in parallel indicate a log-scale greater postnatal expansion of T-cell reactivity to the inhalant allergen; preliminary epitope analysis of OVA responses indicate that the number of OVA epitopes recognised decrease during early childhood. CONCLUSIONS: Inhalant allergen-specific in vitro cytokine production associated with positive skin-prick test (SPT) reactions, one of the hallmarks of adult atopy, manifests in children at or before 5 years of age; additionally, cytokine responses in SPT negative 5 year-olds are restricted to IFNgamma, as per normal adults. In contrast, T-cell responses to a typical food allergen appear to be deleted during early childhood.  相似文献   

17.
The crystal structure of a complex between a 24-amino acid peptide from the third variable (V3) loop of human immunodeficiency virus-type 1 (HIV-1) gp 120 and the Fab fragment of a broadly neutralizing antibody (59.1) was determined to 3 angstrom resolution. The tip of the V3 loop containing the Gly-Pro-Gly-Arg-Ala-Phe sequence adopts a double-turn conformation, which may be the basis of its conservation in many HIV-1 isolates. A complete map of the HIV-1 principal neutralizing determinant was constructed by stitching together structures of V3 loop peptides bound to 59.1 and to an isolate-specific (MN) neutralizing antibody (50.1). Structural conservation of the overlapping epitopes suggests that this biologically relevant conformation could be of use in the design of synthetic vaccines and drugs to inhibit HIV-1 entry and virus-related cellular fusion.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号