首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
移动边缘计算(Mobile Edge Computing,MEC)将云服务器的计算资源扩展到更靠近用户一侧的网络边缘,使得用户可以将任务卸载到边缘服务器,从而克服原先云计算中将任务卸载到云服务器所带来的高时延问题。首先介绍了移动边缘计算的基本概念、基本框架和应用场景,然后围绕卸载决策、联合资源分配的卸载决策分别从单MEC服务器和多MEC服务器两种场景总结了任务卸载技术的研究现状,最后结合当前MEC卸载技术中存在的不足展望了未来MEC卸载技术的研究。  相似文献   

2.
Survey on computation offloading in mobile edge computing   总被引:1,自引:0,他引:1  
Computation offloading in mobile edge computing would transfer the resource intensive computational tasks to the edge network.It can not only solve the shortage of mobile user equipment in resource storage,computation performance and energy efficiency,but also deal with the problem of resource occupation,high latency and network load compared to cloud computing.Firstly the architecture of MEC was introduce and a comparative analysis was made according to various deployment schemes.Then the key technologies of computation offloading was studied from three aspects of decision on computation offloading,allocation of computing resource within MEC and system implement of MEC.Based on the analysis of MEC deployment scheme in 5G,two optimization schemes on computation offloading was proposed in 5G MEC.Finally,the current challenges in the mobility management was summarized,interference management and security of computation offloading in MEC.  相似文献   

3.
Aiming at the problem of high-latency,high-energy-consumption,and low-reliability mobile caused by computing-intensive and delay-sensitive emerging mobile applications in the explosive growth of IoT smart mobile terminals in the mobile edge computing environment,an offload decision-making model where delay and energy consumption were comprehensively included,and a computing resource game allocation model based on reputation that took into account was proposed,then improved particle swarm algorithm and the method of Lagrange multipliers were used respectively to solve models.Simulation results show that the proposed method can meet the service requirements of emerging intelligent applications for low latency,low energy consumption and high reliability,and effectively implement the overall optimized allocation of computing offload resources.  相似文献   

4.
In vehicular edge computing (VEC) networks, the rapid expansion of intelligent transportation and the corresponding enormous numbers of tasks bring stringent requirements on timely task offloading. However, many tasks typically appear within a short period rather than arriving simultaneously, which makes it difficult to realize effective and efficient resource scheduling. In addition, some key information about tasks could be learned due to the regular data collection and uploading processes of sensors, which may contribute to developing effective offloading strategies. Thus, in this paper, we propose a model that considers the deterministic demand of multiple tasks. It is possible to generate effective resource reservations or early preparation decisions in offloading strategies if some feature information of the deterministic demand can be obtained in advance. We formulate our scenario as a 0-1 programming problem to minimize the average delay of tasks and transform it into a convex form. Finally, we proposed an efficient optimal offloading algorithm that uses the interior point method. Simulation results demonstrate that the proposed algorithm has great advantages in optimizing offloading utility.  相似文献   

5.
Cui  Yu-ya  Zhang  De-gan  Zhang  Ting  Zhang  Jie  Piao  Mingjie 《Wireless Networks》2022,28(6):2345-2363
Wireless Networks - In mobile edge computing (MEC), task offloading can solve the problem of resource constraints on mobile devices effectively, but it is not always optimal to offload all the...  相似文献   

6.
Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and performance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges include intolerable delay, congestion in the core network, insufficient Quality of Experience (QoE), high cost of resource utility, such as energy and bandwidth. The aforementioned challenges originate from limited resources in mobile devices, the multi-hop connection between end-users and the cloud, high pressure from computation-intensive and delay-critical applications. Considering the limited resource setting at the MEC, improving the efficiency of task offloading in terms of both energy and delay in MEC applications is an important and urgent problem to be solved. In this paper, the key objective is to propose a task offloading scheme that minimizes the overall energy consumption along with satisfying capacity and delay requirements. Thus, we propose a MEC-assisted energy-efficient task offloading scheme that leverages the cooperative MEC framework. To achieve energy efficiency, we propose a novel hybrid approach established based on Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) to solve the optimization problem. The proposed approach considers efficient resource allocation such as sub-carriers, power, and bandwidth for offloading to guarantee minimum energy consumption. The simulation results demonstrate that the proposed strategy is computational-efficient compared to benchmark methods. Moreover, it improves energy utilization, energy gain, response delay, and offloading utility.  相似文献   

7.
Mobile Internet services are developing rapidly for several applications based on computational ability such as augmented/virtual reality, vehicular networks, etc. The mobile terminals are enabled using mobile edge computing (MEC) for offloading the task at the edge of the cellular networks, but offloading is still a challenging issue due to the dynamism, and uncertainty of upcoming IoT requests and wireless channel state. Moreover, securing the offloading data enhanced the challenges of computational complexities and required a secure and efficient offloading technique. To tackle the mentioned issues, a reinforcement learning-based Markov decision process offloading model is proposed that optimized energy efficiency, and mobile users' time by considering the constrained computation of IoT devices, moreover guarantees efficient resource sharing among multiple users. An advanced encryption standard is employed in this work to fulfil the requirements of data security. The simulation outputs reveal that the proposed approach surpasses the existing baseline models for offloading overhead and service cost QoS parameters ensuring secure data offloading.  相似文献   

8.
In mobile edge computing, service migration can not only reduce the access latency but also reduce the network costs for users. However, due to bandwidth bottleneck, migration costs should also be considered during service migration. In this way, the trade-off between benefits of service migration and total service costs is very important for the cloud service providers. In this paper, we propose an efficient dynamic service migration algorithm named SMDQN, which is based on reinforcement learning. We consider each mobile application service can be hosted on one or more edge nodes and each edge node has limited resources. SMDQN takes total delay and migration costs into consideration. And to reduce the size of Markov decision process space, we devise the deep reinforcement learning algorithm to make a fast decision. We implement the algorithm and test the performance and stability of it. The simulation result shows that it can minimize the service costs and adapt well to different mobile access patterns.  相似文献   

9.
Chen  Lei  Li  Xi  Ji  Hong  Leung  Victor C. M. 《Wireless Networks》2019,25(7):4133-4145
Wireless Networks - As a promising way to offset the low computation capacity of user equipments (UEs), mobile edge computing (MEC) has attracted great attention of academy and industrial recently....  相似文献   

10.
As a promising computing paradigm, Mobile Edge Computing (MEC) provides communication and computing capability at the edge of the network to address the concerns of massive computation requirements, constrained battery capacity and limited bandwidth of the Internet of Things (IoT) systems. Most existing works on mobile edge task ignores the delay sensitivities, which may lead to the degraded utility of computation offloading and dissatisfied users. In this paper, we study the delay sensitivity-aware computation offloading by jointly considering both user's tolerance towards delay of task execution and the network status under computation and communication constraints. Specifically, we use a specific multi-user and multi-server MEC system to define the latency sensitivity of task offloading based on the analysis of delay distribution of task categories. Then, we propose a scoring mechanism to evaluate the sensitivity-dependent utility of task execution and devise a Centralized Iterative Redirection Offloading (CIRO) algorithm to collect all information in the MEC system. By starting with an initial offloading strategy, the CIRO algorithm enables IoT devices to cooperate and iteratively redirect task offloading decisions to optimize the offloading strategy until it converges. Extensive simulation results show that our method can significantly improve the utility of computation offloading in MEC systems and has lower time complexity than existing algorithms.  相似文献   

11.
针对在任务卸载时由于设备的移动而导致任务迁移这一问题,将任务卸载过程建模为马尔科夫决策过程,并通过优化资源分配和任务卸载策略,解决基于联合时延和能耗的损耗函数最小的优化问题。首先将问题转化为最小化损耗函数之和,并在决策前对每个任务的传输功率采用二分法进行优化,然后基于获得的传输功率提出一种QLBA(Q-learning Based Algorithm)来完成卸载决策。仿真结果证实所提方案优于传统算法。  相似文献   

12.
Telecommunication Systems - Device to device (D2D) communication and mobile edge computing (MEC) are two promising technologies in fifth generation (5G) cellular mobile communication. Besides MEC,...  相似文献   

13.
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance.  相似文献   

14.
Blockchain technology is used in edge computing ( EC) systems to solve the security problems caused by single point of failure ( SPOF) due to data loss, task execution failure, or control by malicious nodes. However, the disadvantage of blockchain is high latency, which contradicts the strict latency requirements of EC services. The existing single-level sharded blockchain system ( SLSBS) cannot provide different quality of service for different tasks. To solve these problems, a multi-level sharded blockchain system ( MLSBS) based on genetic algorithm ( GA) is proposed. The shards are classified according to the delay of the service, and the parameters such as the shard size of different shards are different. Using the GA, the MLSBS obtains the optimal resource allocation strategy that achieves maximum security. Simulation results show that the proposed scheme outperforms SLSBS.  相似文献   

15.
In order to achieve the best balance between latency,computational rate and energy consumption,for a edge access network of IoV,a distribution offloading algorithm based on deep Q network (DQN) was considered.Firstly,these tasks of different vehicles were prioritized according to the analytic hierarchy process (AHP),so as to give different weights to the task processing rate to establish a relationship model.Secondly,by introducing edge computing based on DQN,the task offloading model was established by making weighted sum of task processing rate as optimization goal,which realized the long-term utility of strategies for offloading decisions.The performance evaluation results show that,compared with the Q-learning algorithm,the average task processing delay of the proposed method can effectively improve the task offload efficiency.  相似文献   

16.
In this paper, we study the task offloading optimization problem in satellite edge computing environments to reduce the whole communication latency and energy consumption so as to enhance the offloading success rate. A three-tier machine learning framework consisting of collaborative edge devices, edge data centers, and cloud data centers has been proposed to ensure an efficient task execution. To accomplish this goal, we also propose a Q-learning-based reinforcement learning offloading strategy in which both the time-sensitive constraints and data requirements of the computation-intensive tasks are taken into account. It enables various types of tasks to select the most suitable satellite nodes for the computing deployment. Simulation results show that our algorithm outperforms other baseline algorithms in terms of latency, energy consumption, and successful execution efficiency.  相似文献   

17.
针对深度神经模型在网络边缘难以训练的问题,构建了一种基于5G边缘计算的深度学习模型训练架构。架构利用5G边缘计算接入网打通边缘智能设备与边缘计算层的数据通信,模型训练过程采用各边缘计算节点利用本地数据进行全模型训练,再由中心服务器进行模型参数汇集和更新的分布式训练模式,既保证了模型训练的数据集多样性,又减少了网络压力和保障了本地数据隐私,是一种非常具有潜力的深度学习边缘计算架构。  相似文献   

18.
移动边缘计算技术及其本地分流方案   总被引:1,自引:1,他引:1  
移动边缘计算(mobile edge computing,MEC)技术通过为无线接入网提供IT和云计算能力,使得业务本地化、近距离部署成为可能,从而促使无线网络具备低时延、高带宽的传输能力,并且回传带宽需求的降低极大程度减少了运营成本.同时,MEC通过感知无线网络上下文信息(位置、网络负荷、无线资源利用率等)并向业务应用开放,可有效提升用户的业务体验,并且为创新型业务的研发部署提供平台.首先介绍MEC技术,细化并给出MEC平台框图.此外,针对基于MEC平台的本地分流功能,给出了详细的技术方案,并与3GPP本地分流方案LIPA/SIPTO进行对比分析.更进一步,针对MEC技术在网络应用中可能存在的问题与挑战进行了讨论,为后续研究发展提供参考.  相似文献   

19.
互联网与传统制造业的融合使得“工业物联网”(IoT)成为一个热门研究课题。但传统的工业网络仍然面临着来自资源管理,原始数据存储限制和计算能力的挑战。在本文中,我们提出了一种新的软件定义工业网络(SDIN)体系结构来解决IIoT中存在的资源利用,数据处理和存储以及系统兼容性等缺陷。该架构基于软件定义网络(SDN)架构,并结合分层云雾计算和内容感知缓存技术。文中基于SDIN架构,讨论了工业应用中的两种边缘计算策略,并通过考虑不同的场景和服务要求,仿真结果证实了SDIN架构在边缘计算卸载应用中的可行性和有效性。  相似文献   

20.
To address the vast multimedia traffic volume and requirements of user quality of experience in the next‐generation mobile communication system (5G), it is imperative to develop efficient content caching strategy at mobile network edges, which is deemed as a key technique for 5G. Recent advances in edge/cloud computing and machine learning facilitate efficient content caching for 5G, where mobile edge computing can be exploited to reduce service latency by equipping computation and storage capacity at the edge network. In this paper, we propose a proactive caching mechanism named learning‐based cooperative caching (LECC) strategy based on mobile edge computing architecture to reduce transmission cost while improving user quality of experience for future mobile networks. In LECC, we exploit a transfer learning‐based approach for estimating content popularity and then formulate the proactive caching optimization model. As the optimization problem is NP‐hard, we resort to a greedy algorithm for solving the cache content placement problem. Performance evaluation reveals that LECC can apparently improve content cache hit rate and decrease content delivery latency and transmission cost in comparison with known existing caching strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号