首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
本文结合Zhang—Shimizu法与Newmark法,解决了二次非线性的Riemann—Liouville分数导数中奇异性问题,从而得到了非线性分数微积分求解的单步数值积分算法。在此基础上对某型非线性分数阶微分振子的动力学行为进行研究,分别讨论了振子自由振动及强迫振动下参数变化对振子非线性特性的影响。数值计算结果表明,该数值方法具有较好的稳定好,收敛速度快,精度较高,编程简单容易等优点。  相似文献   

2.
分数阶Duffing振子的亚谐共振   总被引:1,自引:0,他引:1  
研究了含分数阶微分项的Duffing振子的亚谐共振,利用平均法得到了系统的一阶近似解。提出了亚谐共振时等效线性阻尼和等效线性刚度的概念,分析了分数阶微分项的系数和阶次对系统动力学特性的影响。建立了亚谐共振定常解的幅频曲线的解析表达式,并得到了亚谐共振周期响应的存在条件和稳定性判断准则。最后进行了数值解和解析解的比较,证明了解析结果的准确性,并通过数值仿真研究了分数阶微分项的参数对亚谐共振解的存在条件、稳定性条件和系统幅频曲线的影响。  相似文献   

3.
研究了含分数阶非线性特性的1/4汽车悬架模型在双频激励下的混沌运动.运用Melnikov方法,推导出系统发生异宿混沌运动的解析必要条件,得到系统混沌边界曲面阈值,讨论了悬架系统各参数对混沌边界曲面的影响.运用时间历程图、频谱图、相图、庞加莱截面图及最大李雅普诺夫指数进行数值验证.研究表明,在双频激励下悬架系统存在混沌运...  相似文献   

4.
由于催化剂的存在,Brusselator振子是典型的多尺度耦合系统,即常常存在激发态和沉寂态耦合的簇发振动行为。考虑分数阶Brusselator系统的催化过程受到外部周期扰动下的情形,这使系统的非线性行为更加复杂。根据分数阶系统稳定性理论进行了双参数分岔分析,讨论了Hopf分岔的充分条件。发现系统存在一条奇线,利用中心流形定理和数值模拟验证了该奇线的稳定性。探讨了分数阶阶次对簇发振动的影响,通过分数阶阶次与慢变参数的双参数分岔图,发现分数阶阶次与激发态时间长短密切相关,即降低分数阶阶次,可以缩短激发态时间,从而增加沉寂态的时间。研究还发现扰动幅值的变化直接影响快子系统的吸引子类型,当激励幅值较大时,快子系统涉及到两种吸引子,沉寂态和激发态并存;当激励幅值较小时,快子系统涉及一种吸引子,沉寂态基本消失。  相似文献   

5.
研究了谐波激励下含有分数阶微分项的分段Duffing振子的混沌运动,分数阶微分项采用Caputo定义进行计算,并利用等效刚度和等效阻尼的概念对其进行处理。运用Melnikov方法,建立了Smale马蹄意义下混沌运动的必要条件,得到了系统发生混沌运动的临界条件,并进行了解析解和数值解的比较,结果证明了解析必要条件的正确性。最后通过数值模拟,研究了系统线性刚度系数、阻尼系数、分数阶阶次、分数阶系数以及分段Duffing刚度系数对系统混沌运动的影响。  相似文献   

6.
基于分数阶Wigner分布的机械故障诊断方法研究   总被引:2,自引:0,他引:2  
为采用分数阶Wigner分布的机械故障诊断新方法,讨论了分数阶Wigner分布中最优分数阶的选择。仿真研究表明,分数阶Wigner分布优于传统的Wigner分布,分数阶Wigner分布能有效地抑制交叉项干扰。将提出的方法应用到轴承故障诊断中,实验结果验证了提出的方法的有效性。  相似文献   

7.
金属橡胶元件的应力应变关系为非线性滞回曲线,现有的金属橡胶动力学模型大多采用多参数、分段函数进行描述,增加了系统的复杂性。通过分析金属橡胶的弹性恢复力和阻尼力的组成,利用分数阶微分能够描述各种材料及过程记忆性的特点,提出一种含有分数阶微分的金属橡胶黏弹性本构模型,在此模型基础上建立了金属橡胶非线性动力学系统模型;通过正弦位移加载实验获取了典型金属橡胶隔振系统在多种激励幅值、频率作用下的恢复力;采用遗传算法对实验数据进行曲线拟合,识别出模型中所有参数;通过分析推导出系统模型中各参数与振幅及频率的函数关系。结果表明,所提出的含分数阶微分项的金属橡胶非线性动力学系统模型,具有连续的数学表达式,能够较准确地反映金属橡胶非线性系统的完整动力学性能,而且与现有金属橡胶动力学系统模型相比,参数较少,结构简单,为金属橡胶动力学系统的研究提供了新的思路。  相似文献   

8.
任鹏  王鹏  张华  唐印 《工程力学》2020,37(9):153-160+207
针对黏土蠕变的非线性性质,以成都黏土为研究对象展开蠕变试验,发现黏土变形包括瞬时弹性变形、衰减蠕变变形、稳态蠕变变形和加速蠕变变形;黏土长期弹性模量随时间和应力的增加非线性软化;黏滞系数随应力的增加非线性软化,随时间的增加非线性硬化。基于流变学理论、分数阶微积分理论和Harris衰减函数,分别构建了分数阶导数元件、非线性弹性元件和非线性黏滞元件,从而建立了形式简单、参数较少和概念清晰的非线性分数阶导数蠕变模型。将非线性分数阶导数蠕变模型和Burgers蠕变模型进行对比拟合分析,发现非线性分数阶导数蠕变模型各阶段的拟合结果更好,对黏土非线性蠕变的描述更合理,可准确地反映黏土蠕变全过程,表明了所建立非线性分数阶导数蠕变模型的科学合理性。  相似文献   

9.
研究了一类具有分数阶导数阻尼的参数激励振动问题。对含有由Riemann-Liouville定义的分数阶导数的Mathieu振动方程构造渐近解。利用多重尺度法,在激励参数取不同值的情况下,求得渐近解,得到分数阶指数对解的影响。  相似文献   

10.
用积分平均法和黎卡提技巧,对偶数阶带阻尼项非线性微分方程研究获得一些新的振动准则,这些结果改进和推广了一些已有文献的性质.最后,我们给出实例以阐述本文结果的有效性.  相似文献   

11.
The first passage failure of single-degree-of-freedom (SDOF) nonlinear oscillator with lightly fractional derivative damping under real noise excitations is investigated in this paper. First, the system state is approximately represented by one-dimensional time-homogeneous diffusive Markov process of amplitude through stochastic averaging. Then, the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the conditional mean of first passage time are established from the averaged Itô equation for Hamiltonian. The conditional reliability function, the conditional probability density and mean of the first passage time are obtained by solving these equations together with suitable initial condition and boundary conditions. Finally, two examples are worked out in detail and the analytical solutions are checked by those from the Monte Carlo simulation of original systems.  相似文献   

12.
利用分数导数本构模型描述材料的粘弹性特性,建立了粘弹性浅拱在横向荷载作用下的动力学方程。利用Galerkin截断法并结合边界条件分别得到了一阶和二阶Galerkin系统的控制微分方程。通过数值计算,分析了简谐激励下一阶Galerkin系统的非线动力学行为。研究表明:随着外激励幅值的变化,粘弹性浅拱系统可以通过倍周期分岔或阵发性两条路径进入混沌;固定外激励幅值、频率以及阻尼系数等状态参数,不同初始条件下,系统可以出现多周期解共存、周期解与混沌解共存的现象。  相似文献   

13.
L. C. Chen  W. Q. Zhu 《Acta Mechanica》2009,207(1-2):109-120
The stochastic stability of a Duffing oscillator with fractional derivative damping of order α (0 < α < 1) under parametric excitation of both harmonic and white noise is studied. First, the averaged Itô equations are derived by using the stochastic averaging method for an SDOF strongly nonlinear stochastic system with fractional derivative damping under combined harmonic and white noise excitations. Then, the expression for the largest Lyapunov exponent of the linearized averaged Itô equations is obtained and the asymptotic Lyapunov stability with probability one of the original system is determined approximately by using the largest Lyapunov exponent. Finally, the analytical results are confirmed by using those from a Monte Carlo simulation of the original system.  相似文献   

14.
Summary. Existence, uniqueness and dissipativity is established for a class of nonlinear dynamical systems including systems with fractional damping. The problem is reduced to a system of fractional-order differential equations for numerical integration. The method is applied to a non-linear pendulum with fractional damping as well as to a nonlinear pendulum suspended on an extensible string. An example of such a fractional damping is a pendulum with the bob swinging in a viscous fluid and subject to the Stokes force (proportional to the velocity of the bob) and the Basset-Boussinesq force (proportional to the Caputo derivative of order 1/2 of the angular velocity). An existence and uniqueness theorem is proved and dissipativity is studied for a class of discrete mechanical systems subject to fractional-type damping. Some particularities of fractional damping are exhibited, including non-monotonic decay of elastic energy. The 2:1 resonance is compared with nonresonant behavior.  相似文献   

15.
16.
Non‐inertial transients may be effectively solved using explicit time integration with arbitrary inertial and damping properties. The usual approach relies on a diagonal lumped mass on which strictly mass proportional damping is based. While the damping coefficient can be adaptively determined on the basis of the estimated frequency of the predominant response, local changes in stiffness, often associated with changing contact conditions, can cause abrupt changes in the damping coefficient. This can substantially impede the progress of the solution, particularly when deformations involve large translations or rotations of parts of the system. A modification to the mass proportional damping is developed and implemented to avoid the deleterious effects of sudden changes in the damping coefficient. A new procedure is thus implemented so that the usual dynamic relaxation method will automatically adapt to changing conditions of response in such a way as to avoid overdamping low modes due to subsequent higher frequency events. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
针对传统约束阻尼结构振动能耗散有限问题,引入“层间过渡层”设计的概念,提出一种层间过渡约束阻尼结构,采用分布参数传递函数法对该结构进行了动力响应分析。经推导,得到了阻尼结构的各阶损耗因子和频率的解析解,并进行了有限元仿真验证,二者计算结果吻合良好。以悬臂阻尼板为例,探讨了过渡层参数行为对其频响特性的影响,结果表明,在结构振动时,过渡层可将变形传递给阻尼层,起到放大阻尼层的剪切变形作用,从而耗散更多的振动能量;同时还讨论了过渡层的厚度、剪切模量、密度与泊松比对结构固有频率和损耗因子的影响,为进一步优化工作打下了良好基础。  相似文献   

18.
This paper presents a homogenised finite element formulation for the transient dynamic analysis of asymmetric and symmetric unconstrained layer damping beams in which the viscoelastic material is characterised by a five-parameter fractional derivative model. This formulation is based on the weighted residual method (Galerkin’s approach) providing a fractional matrix equation of motion. The application of Grünwald-Letnikov’s definition of the fractional derivatives allows to solve numerically the fractional equation by means of two different implicit formulations. Numerical examples for a cantilever beam with viscoelastic treatment are presented comparing the response provided by the proposed homogenised formulation with that of Padovan, based on the principle of virtual work. Different damping levels and load cases are analysed, as well as the influence of the truncation and time-step. From the numerical applications it can be concluded that the presented formulation allows to reduce significantly the degrees of freedom and consequently the computational time and storage needs for the transient dynamic analysis of structural systems in which damping treatments have been applied by means of viscoelastic materials characterised by fractional derivative models.  相似文献   

19.
为研究爆炸荷载下泡沫混凝土减振层厚度对岩体拱结构的减振性能影响,基于ANSYS/LS-DYNA动力有限元分析软件,建立炸药-空气-结构流固耦合模型,在岩体与衬砌间设置0、0.2、0.4、0.6、0.8、1.0、1.2 m不同厚度泡沫混凝土减振层。应用流固耦合算法对比分析了衬砌外层拱顶、拱肩和拱脚单元最大有效应力、峰值压力及峰值位移。拱顶上方单元压力与TMB5-855-1公式吻合良好,验证了模型有效性。数值模拟结果表明:设置减振层后拱顶、拱肩和拱脚最大有效应力变小,拱脚减少超过80%;随减振层厚度增加,拱顶、拱肩和拱脚峰值压力减小,峰值位移增加,当厚度超过0.6 m,减振抗爆效果不明显,峰值位移趋于稳定;拱顶作为响应强烈部位,应采取加固措施;综合考虑经济因素,建议设置0.6 m厚减振层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号