首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlation matching has been widely accepted as a rudimentary similarity measure to obtain dense 3D reconstruction from a stereo pair. In particular, given a large overlapping area between images with minimal scale differences, the correlation results followed by a geometrically constrained global optimisation delivers adequately dense and accurate reconstruction results. In order to achieve greater reliability, however, correlation matching should correctly account for the geometrical distortion introduced by the different viewing angles of the stereo or multi-view sensors. Conventional adaptive least squares correlation (ALSC) matching addresses this by modifying the shape of a matching window iteratively, assuming that the distortion can be approximated by an affine transform. Nevertheless, since an image captured from different viewing angle is often not practically identical due to scene occlusions, the matching confidence normally deteriorates. Subsequently, it affects the density of the reconstruction results from ALSC-based stereo region growing algorithms. To address this, we propose an advanced ALSC matching method that can progressively update matching weight for each pixel in an aggregating window using a relaxation labelling technique. The experimental results show that the proposed method can improve matching performance, which consequently enhances the quality of stereo reconstruction. Also, the results demonstrate its ability to refine a scale invariant conjugate point pair to an affine and scale invariant point pair.  相似文献   

2.
This article concerns a new type of photometric stereo algorithm for which outliers such as highlights and shadows, including attached and cast shadow, are mixed with Lambertian data. The underlying motivation behind this algorithm is very simple: an axial symmetrical setup in 6-light photometric stereo can be used to offer advantages. We investigate why an axial symmetrical setup is useful and how it can be used to improve standard photometric stereo. The main result is summarized as a combinatorial photometric stereo algorithm which embeds a non-Lambertian detection procedure. To apply this algorithm, it involves three steps. First, it combines a group of reflectance intensities to make five virtual images, whose equivalence is guaranteed due to the axial symmetrical setup of the 6-source photometric stereo system. Second, comparison between these virtual images generates a five by five skew-symmetric matrix. The Frobenius norm of this matrix is then employed as an index to determine whether there is a non-Lambertian pixel present among the six pixels. Finally, after identification of non-Lambertian pixels, standard photometric stereo is performed to realize 3D modeling. Validation of this algorithm has been conducted with both synthetic and real images. The real images were obtained from a newly designed 3D imaging device, the Skin Analyzer, for clinical inspection of melanoma. Experimental study shows that combinatorial photometric stereo gives promising results in suppressing shadows and highlights, while improving 3D reconstruction results. Furthermore, error analysis illustrates how to determine an appropriate threshold value to enable the algorithm to achieve optimal performance.  相似文献   

3.
4.
The article describes a reconstruction pipeline that generates piecewise-planar models of man-made environments using two calibrated views. The 3D space is sampled by a set of virtual cut planes that intersect the baseline of the stereo rig and implicitly define possible pixel correspondences across views. The likelihood of these correspondences being true matches is measured using signal symmetry analysis [1], which enables to obtain profile contours of the 3D scene that become lines whenever the virtual cut planes intersect planar surfaces. The detection and estimation of these lines cuts is formulated as a global optimization problem over the symmetry matching cost, and pairs of reconstructed lines are used to generate plane hypotheses that serve as input to PEARL clustering [2]. The PEARL algorithm alternates between a discrete optimization step, which merges planar surface hypotheses and discards detections with poor support, and a continuous optimization step, which refines the plane poses taking into account surface slant. The pipeline outputs an accurate semi-dense Piecewise-Planar Reconstruction of the 3D scene. In addition, the input images can be segmented into piecewise-planar regions using a standard labeling formulation for assigning pixels to plane detections. Extensive experiments with both indoor and outdoor stereo pairs show significant improvements over state-of-the-art methods with respect to accuracy and robustness.  相似文献   

5.
目的 从视差图反映影像景物深度变化并与LiDAR系统距离量测信息"同源"这一认识出发,提出一种基于视差互信息的立体航空影像与LiDAR点云自动配准方法.方法 本文方法分为3个阶段:第一、通过半全局匹配SGM(semi-gdabal matching)生成立体航空影像密集视差图;第二、利用航空影像内参数及初始配准参数(外方位元素)对LiDAR点云进行"针孔"透视成像,生成与待配准的立体航空影像空间分辨率、几何形变相接近且具有相同幅面大小的模拟灰度影像-LiDAR深度影像,以互信息作为相似性测度依据估计航空影像视差图与LiDAR深度影像的几何映射关系,进而以之为基础实现LiDAR点云影像概略相关;第三、以LiDAR点云影像概略相关获得的近似同名像点为观测值,以视差互信息为权重,实施摄影测量空间后方交会计算获得优化的影像外方位元素,生成新的LiDAR深度影像并重复上述过程,直至满足给定的迭代计算条件.结果 选取重叠度约60%、幅面大小7 216×5 428像素、空间分辨率约0.5 m的立体航空像对与平均点间距约1.5 m、水平精度约25 cm的LiDAR"点云"进行空间配准实验,配准精度接近1个像素.结论 实验结果表明,本文方法自动化程度高且配准精度适中,理论上适用于不同场景类型、相机内参数已知立体航空影像,具有良好的应用价值.  相似文献   

6.
In stereoscopic video coding, the interview correlation between the stereo image pair can be used for error concealment. A new spatial error concealment method for stereoscopic video coding based on pixel matching in the decoder is proposed in this paper. The lost macroblocks are recovered by utilizing disparity matching between two-view images on a pixel-by-pixel basis. Firstly, we get the candidate disparity vectors of the four neighboring pixels of the lost pixel by disparity matching in the decoder. Secondly, by calculating the boundary pixel difference, we determine an optimal replacing pixel in the reference image, and then we recover the lost pixel by the optimal pixel in the reference image. Experimental results show that the proposed algorithm performs better comparing to the previous technique.  相似文献   

7.
Stereo matching is one of the most used algorithms in real-time image processing applications such as positioning systems for mobile robots, three-dimensional building mapping and recognition, detection and three-dimensional reconstruction of objects. In order to improve the performance, stereo matching algorithms often have been implemented in dedicated hardware such as FPGA or GPU devices. In this paper an FPGA stereo matching unit based on fuzzy logic is described. The proposed algorithm consists of three stages. First, three similarity parameters inherent to each pixel contained in the input stereo pair are computed. Then, the similarity parameters are sent to a fuzzy inference system which determines a fuzzy-similarity value. Finally, the disparity value is defined as the index which maximizes the fuzzy-similarity values (zero up to dmax). Dense disparity maps are computed at a rate of 76 frames per second for input stereo pairs of 1280 × 1024 pixel resolution and a maximum expected disparity equal to 15. The developed FPGA architecture provides reduction of the hardware resource demand compared to other FPGA-based stereo matching algorithms: near to 72.35% for logic units and near to 32.24% for bits of memory. In addition, the developed FPGA architecture increases the processing speed: near to 34.90% pixels per second and outperforms the accuracy of most of real-time stereo matching algorithms in the state of the art.  相似文献   

8.
针对立体匹配中低纹理区域容易产生误匹配及传统动态规划固有的条纹问题,提出一种改进的基于双目立体视觉的低纹理图像三维重构算法。该算法首先基于像素间相似度和像素自身特异性计算匹配代价并引入一种自适应多边形支撑区域聚集匹配度。然后采用一种全局意义的简单树形动态规划进行逐点匹配。最后基于左右一致性准则运用一种简单有效的视差校正方法消除误匹配得到最终视差图。实验证明将算法运用于实拍低纹理灰度图像的匹配,得到轮廓光滑清晰的三维点云,说明该方法的适用性。  相似文献   

9.
A 4.4‐inch 2D/3D switchable full high definition (FHD) six‐view 3D display with 3D resolution greater than 170 ppi has been accomplished. In addition to adopting low temperature polysilicon technology (LTPS), which is most suitable for high resolution displays, a new RGBW pixel arrangement using four‐square sub‐pixels has been devised. In 2D, a resolution greater than 500 ppi, accompanied with high luminance, has been achieved. A new liquid crystal lens (LCL) has been exploited for 2D/3D switching. By employing a special multielectrode structure and dedicated manufacturing process, an optical focal ratio less than 20%, which is essential for low 3D cross talk for a six‐view 3D display, has been attained by adopting the LCL. In the vertical direction of the display, there is no cross talk increase when the viewing position is changed because of the new pixel structure. The strong focal strength of the LCL combined with a revised high‐density multi‐view design give rise to a wide 3D viewing angle greater than 20 degrees in the horizontal direction and minimum cross talk less than 10%.  相似文献   

10.
Dense stereo algorithms are able to estimate disparities at all pixels including untextured regions. Typically these disparities are evaluated at integer disparity steps. A subsequent sub-pixel interpolation often fails to propagate smoothness constraints on a sub-pixel level.We propose to increase the sub-pixel accuracy in low-textured regions in four possible ways: First, we present an analysis that shows the benefit of evaluating the disparity space at fractional disparities. Second, we introduce a new disparity smoothing algorithm that preserves depth discontinuities and enforces smoothness on a sub-pixel level. Third, we present a novel stereo constraint (gravitational constraint) that assumes sorted disparity values in vertical direction and guides global algorithms to reduce false matches, especially in low-textured regions. Finally, we show how image sequence analysis improves stereo accuracy without explicitly performing tracking. Our goal in this work is to obtain an accurate 3D reconstruction. Large-scale 3D reconstruction will benefit heavily from these sub-pixel refinements.Results based on semi-global matching, obtained with the above mentioned algorithmic extensions are shown for the Middlebury stereo ground truth data sets. The presented improvements, called ImproveSubPix, turn out to be one of the top-performing algorithms when evaluating the set on a sub-pixel level while being computationally efficient. Additional results are presented for urban scenes. The four improvements are independent of the underlying type of stereo algorithm.  相似文献   

11.
We present an optimal generalisation of the 4-light photometric stereo technique for an arbitrary number of Q illuminants. We assume that the surface reflectance can be approximated by the Lambertian model plus a specular reflection. The algorithm works in a recursive manner eliminating the pixel intensities affected by shadows or highlights, based on a least squares error technique, retaining only the information coming from illumination directions that can be used for photometric stereo reconstruction of the normal of the corresponding surface patch. We report results for both simulated and real surfaces and compare them with the results of other state of the art photometric stereo algorithms.  相似文献   

12.
Photometric stereo can be used to obtain a fast and noncontact surface reconstruction of Lambertian surfaces. Despite several published works concerning the uncertainties and optimal light configurations of photometric stereo, no solutions for optimal surface reconstruction from noisy real images have been proposed. In this paper, optimal surface reconstruction methods for approximate planar textured surfaces using photometric stereo are derived, given that the statistics of imaging errors are measurable. Simulated and real surfaces are experimentally studied, and the results validate that the proposed approaches improve the surface reconstruction especially for the high-frequency height variations.  相似文献   

13.
Many fundamental computer vision problems, including optical flow estimation and stereo matching, involve the key step of computing dense color matching among pixels. In this paper, we show that by merely upsampling, we can improve sub-pixel correspondence estimation. In addition, we identify the regularization bias problem and explore its relationship to image resolution. We propose a general upsampling framework to compute sub-pixel color matching for different computer vision problems. Various experiments were performed on motion estimation and stereo matching data. We are able to reduce errors by up to 30%, which would otherwise be very difficult to achieve through other conventional optimization methods.  相似文献   

14.
目的 符合用户视觉特性的3维图像体验质量评价方法有助于准确、客观地体现用户观看3D图像或视频时的视觉感知体验,从而给优化3维内容提供一定的思路。现有的评价方法仅从图像失真、深度感知和视觉舒适度中的一个维度或两个维度出发对立体图像进行评价,评价结果的准确性有待进一步提升。为了更加全面和准确地评价3D图像的视觉感知体验,提出了一种用户多维感知的3D图像体验质量评价算法。方法 首先对左右图像的差异图像和融合图像提取自然场景统计参数表示失真特征;然后对深度图像提取敏感区域,对敏感区域绘制失真前后深度变换直方图,统计深度变化情况以及利用尺度不变特征变换(SIFT)关键点匹配算法计算匹配点数目,两者共同表示深度感知特征;接下来对视觉显著区域提取视差均值、幅值表示舒适度特征;最后综合考虑图像失真、深度感知和视觉舒适度3个维度特征,将3个维度特征归一化后联合成体验质量特征向量,采用支持向量回归(SVR)训练评价模型,并得到最终的体验质量得分。结果 在LIVE和Waterloo IVC数据库上的实验结果表明,所提出的方法与人们的主观感知的相关性达到了0.942和0.858。结论 该方法充分利用了立体图像的特性,评价结果优于比较的几种经典算法,所构建模型的评价结果与用户的主观体验有更好的一致性。  相似文献   

15.
Over lands, the cloud detection on remote sensing images is not an easy task, because of the frequent difficulty to distinguish clouds from the underlying landscape, even at a high resolution. Up to now, most high resolution images have been distributed without an associated cloud mask. This situation should change in the near future, thanks to two new satellite missions that will provide optical images combining 3 features: high spatial resolution, high revisit frequency and constant viewing angles. The VENµS (French and Israeli cooperation) mission should be launched in 2012 and the European SENTINEL-2 mission in 2013. Fortunately, two existing satellite missions, FORMOSAT-2 and LANDSAT, enable to simulate the future data of these sensors.Multi-temporal imagery at constant viewing angles provides a new way to discriminate clouded and unclouded pixels, using the relative stability of the earth surface reflectances compared to the quick variations of the reflectance of pixels affected by clouds. In this study, we have used time series of images from FORMOSAT-2 and LANDSAT to develop and test a Multi-Temporal Cloud Detection (MTCD) method. This algorithm combines a detection of a sudden increase of reflectance in the blue wavelength on a pixel by pixel basis, and a test of the linear correlation of pixel neighborhoods taken from couples of images acquired successively.MTCD cloud masks are compared with cloud cover assessments obtained from FORMOSAT-2 and LANDSAT data catalogs. The results show that the MTCD method provides a better discrimination of clouded and unclouded pixels than the usual methods based on thresholds applied to reflectances or reflectance ratios. This method will be used within VENµS level 2 processing and will be proposed for SENTINEL-2 level 2 processing.  相似文献   

16.
Documenting underwater archaeological sites is an extremely challenging problem. Sites covering large areas are particularly daunting for traditional techniques. In this paper, we present a novel approach to this problem using both an autonomous underwater vehicle (AUV) and a diver‐controlled stereo imaging platform to document the submerged Bronze Age city at Pavlopetri, Greece. The result is a three‐dimensional (3D) reconstruction covering 26,600 m2 at a resolution of 2 mm/pixel, the largest‐scale underwater optical 3D map, at such a resolution, in the world to date. We discuss the advances necessary to achieve this result, including i) an approach to color correct large numbers of images at varying altitudes and over varying bottom types; ii) a large‐scale bundle adjustment framework that is capable of handling upward of 400,000 stereo images; and iii) a novel approach to the registration and rapid documentation of an underwater excavations area that can quickly produce maps of site change. We present visual and quantitative comparisons to the authors' previous underwater mapping approaches.  相似文献   

17.
We observed surface water in a wetland, imaging in the subsolar or specular direction the exceptionally bright specular reflection of sunlight at a ground resolution of 0.3 m. We then simulated ground resolutions between 1.7 m and 1.2 km through aggregation of the 0.3 m pixels. Contrary to the expectations of some of our colleagues in the wetlands community, for these data, the accuracy of spectral mixture analysis (SMA) estimates of surface water increases as pixel ground footprint size increases. Our results suggest that regional to global scale assessments of flooded landscapes and wetlands that do not involve issues requiring 1 m resolution per se may be addressed with acceptable accuracy by applying SMA techniques to low resolution imagery. Our results indicate within-pixel estimates of surface water area derived from data measured by subsolar viewing sensors with large ground pixel footprints, such as satellite POLarization and Directionality of Earth Radiance (POLDER) data, may be highly accurate under strong surface wind conditions.  相似文献   

18.
目的 针对由航空影像自动生成大范围3维地形的立体模型配准问题,提出一种自动配准全部立体模型的方法,从而生成大范围3维地形。方法 首先由相邻影像构建独立的立体模型;然后根据特征匹配同名点在公共影像上的坐标对应关系,自动提取相邻模型的连接点;通过循环遍历搜索,自动配准全部立体模型,进而构建全航摄区的大范围3维地形。结果 采用两组数据进行实验,结果显示,两组数据全部3维模型的均方配准误差分别为5.20像素和2.63像素。本文方法生成的大范围地形的相对精度较高;对第2组数据的结果采用控制点进行绝对定向,并用检查点进行精度评估,结果显示全部检查点的均方平面和高程误差分别为0.326 m和0.502 m,生成的大范围地形达到了较高的绝对精度。结论 本文方法可自动化执行,仅需输入一系列有一定重叠的航空影像,即可自动生成按一定方式组织的大范围3维地形产品。该方法生成的大范围地形既可用于3维场景浏览,也可用于地形量测,但不适用于由激光扫描获取的点云数据的配准。  相似文献   

19.
针对现有基于多视图的三维重建方法未充分考虑像素点在其余视图的可见性,从而导致重建完整度不足,且在弱纹理和遮挡区域重建困难等问题,提出了一种应用于高分辨率的三维重建网络。首先提出了一种引入可见性感知的自适应成本聚合方法用于成本量的聚合,通过网络获取视图中像素点的可见性,可以提高遮挡区域重建完整性;采用基于方差预测每像素视差范围,构建空间变化的深度假设面用于分阶段重建,在最后一阶段提出了基于卷积空间传播网络的深度图优化模块,以获得优化的深度图;最后采用改进深度图融合算法,结合所有视图的像素点与3D点的重投影误差进行一致性检查,得到密集点云。在DTU 数据集上与其他方法的定量定性比较结果表明,提出的方法可以重建出细节上表现更好的场景。  相似文献   

20.
Abstract— The viewing freedom of the reduced‐view super multi‐view (SMV) display was analyzed. It was found that there are separate multiple viewing ranges in the depth direction; thus, a technique that selects an appropriate viewing range to increase the longitudinal viewing freedom has been developed. Pixels of a flat‐panel display viewed by the viewer's eyes through a lenticular lens were determined from three‐dimensional (3‐D) positions of the viewer's eyes, which were obtained using an eye‐tracking system that employed a stereo camera. Parallax images corresponding to the 3‐D positions of the viewer's eyes were generated, which were displayed by the determined pixels. The experimental results show that the proposed technique successfully increased the longitudinal viewing freedom. It is also shown that a video camera was able to focus on the produced SMV images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号