首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless sensor network (WSN) consists of densely distributed nodes that are deployed to observe and react to events within the sensor field. In WSNs, energy management and network lifetime optimization are major issues in the designing of cluster-based routing protocols. Clustering is an efficient data gathering technique that effectively reduces the energy consumption by organizing nodes into groups. However, in clustering protocols, cluster heads (CHs) bear additional load for coordinating various activities within the cluster. Improper selection of CHs causes increased energy consumption and also degrades the performance of WSN. Therefore, proper CH selection and their load balancing using efficient routing protocol is a critical aspect for long run operation of WSN. Clustering a network with proper load balancing is an NP-hard problem. To solve such problems having vast search area, optimization algorithm is the preeminent possible solution. Spider monkey optimization (SMO) is a relatively new nature inspired evolutionary algorithm based on the foraging behaviour of spider monkeys. It has proved its worth for benchmark functions optimization and antenna design problems. In this paper, SMO based threshold-sensitive energy-efficient clustering protocol is proposed to prolong network lifetime with an intend to extend the stability period of the network. Dual-hop communication between CHs and BS is utilized to achieve load balancing of distant CHs and energy minimization. The results demonstrate that the proposed protocol significantly outperforms existing protocols in terms of energy consumption, system lifetime and stability period.  相似文献   

2.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

3.

Wireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.

  相似文献   

4.
在无线传感器网络路由协议的研究中,能量高效是其首要设计目标.传统LEACH协议产生簇头数目比较随机,并且簇头直接与基站通信导致能量消耗过快.在分析传统和改进LEACH路由协议的基础上,提出了一种簇头数目固定的簇头选择机制,解决了簇头分布不均匀的问题.并且将蚁群优化算法应用到无线传感器网络的路径选择中,利用蚁群的动态适应性和寻优能力,在簇头与基站之间形成一条最优路径进行通信.在Matlab平台下对新提出的算法进行仿真测试实验,实验结果表明,相对于LEACH路由协议,该算法降低了平均能量消耗,延长了网络的生命周期.  相似文献   

5.
Reducing energy consumption and increasing network lifetime are the major concerns in Wireless Sensor Network (WSN). Increase in network lifetime reduces the frequency of recharging and replacing batteries of the sensor node. The key factors influencing energy consumption are distance and number of bits transmitted inside the network. The problem of energy hole and hotspot inside the network make neighbouring nodes unusable even if the node is efficient for data transmission. Energy Efficient Energy Hole Repelling (EEEHR) routing algorithm is developed to solve the problem. Smaller clusters are formed near the sink and clusters of larger size are made with nodes far from the sink. This methodology promotes equal sharing of load repelling energy hole and hotspot issues. The opportunity of being a Cluster Head (CH) is given to a node with high residual energy, very low intra cluster distance in case of nodes far away from the sink and very low CH to sink distance for the nodes one hop from the sink. The proposed algorithm is compared with LEACH, LEACH-C and SEP routing protocol to prove its novel working. The proposed EEEHR routing algorithm provides improved lifetime, throughput and less packet drop. The proposed algorithm also reduces energy hole and hotspot problem in the network.  相似文献   

6.

Wireless sensor networks (WSNs) have grown excessively due to their various applications and low installation cost. In WSN, the main concern is to reduce energy consumption among nodes while maintaining timely and reliable data forwarding. However, most of the existing energy aware routing protocols incur unbalanced energy consumption, which results in inefficient load balancing and compromised network lifetime. Therefore, the main target of this research paper is to present adaptive energy aware cluster-based routing (AECR) protocol for improving energy conservation and data delivery performance. Our proposed AECR protocol differs from other energy efficient routing schemes in some aspects. Firstly, it generates balance sized clusters based on nodes distribution and avoids random clusters formation. Secondly, it optimizes both intra-cluster and inter-cluster routing paths for improving data delivery performance while balancing data traffic on constructed forwarding routes and at the end, in order to reduce the excessive energy consumption and improving load distribution, the role of Cluster Head (CH) is shifted dynamically among nodes by exploit of network conditions. Simulation results demonstrate that AECR protocol outperforms state of the art in terms of various performance metrics.

  相似文献   

7.

Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.

  相似文献   

8.

In general, Wireless Sensor Networks (WSNs) is developed with a group of distributed and locative sensor nodes for sensing different environmental conditions. The primary challenges faced by WSN are: low network time and transmission data delay. In crucial applications like monitoring the ecosystem, military and disaster management, and data routing, the incorporation of WSN is very critical. Henceforth, a Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol was proposed but it was found to be uneconomical for energy management. Also, the optimization of Cluster Head (CH) is considered as NP hard problem. This research work deals the issues in optimal path selection in routing of wireless sensor networks to increase the network lifetime. Various techniques are available in metaheuristics, such as the Charged System Search (CSS), that effectively used to resolve the routing problem. Despite of this, most of the meta-heuristics suffer from local optima issues. A charged system search and harmony search algorithm based routing protocol is presented in this research work. Experimental results present the efficient performance of proposed HS model with increased cluster structures, improved network lifetime and reduced end-to-end delay and average packet loss rate.

  相似文献   

9.
张跃  周杰 《通信技术》2013,(12):23-28
针对于直接传输(DT,DirectTransmission)和最小化传输能量(MTE,MinimumTransmissionEnergy)两种传统通信协议的缺点和无线传感器网络(WSNs,WirelessSensorNetworks)的特点,分析了基于分簇的无线传感器网络通信的低功耗自适应分簇协议(LEACH,Low—EnergyAdaptiveCluste—ringHierarchy)的基本原理,并对三者进行仿真分析。分析与仿真结果表明,使用LEACH协议比使用DT协议要节约大约7到8倍的能源,同时也比MTE协议方式要减少4到8倍能源消耗。更适用于无线传感器网络。  相似文献   

10.
无线传感器网络(Wireless Sensor Networks,WSN)的路由协议是无线传感器网络领域中的一个研究热点.针对LEACH协议的不足,提出一种基于自适应t分布改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的改进LEACH协议(LEACH?ISSA),以解决...  相似文献   

11.
无线传感网络(WSN)路由协议中,分簇路由具有拓扑管理方便、能量高效和数据融合简单等优点,成为当前重点研究的路由技术。通过研究各种环境下的移动传感器网络,有效地降低能耗则是研究移动无线传感器网络的重要目的之一。针对无线传感网络中移动性问题,基于LEACH协议,利用移动传感器网络中节点距离、速度和剩余能量等因素提出了能量高效的移动分簇路由算法。实验结果表明此算法能够较好地支持节点移动,从而降低网络能耗,延长网络生存时间。  相似文献   

12.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

13.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

14.
Due to the promising application of collecting information from remote or inaccessible location, wireless sensor networks pose big challenge for data routing to maximize the communication with more energy efficient. Literature presents different cluster-based energy aware routing protocol for maximizing the life time of sensor nodes. Accordingly, an energy efficient clustering mechanism, based on artificial bee colony algorithm and factional calculus is proposed in this paper to maximize the network energy and life time of nodes by optimally selecting cluster-head. The hybrid optimization algorithm called, multi-objective fractional artificial bee colony is developed to control the convergence rate of ABC with the newly designed fitness function which considered three objectives like, energy consumption, distance travelled and delays to minimize the overall objective. The performance of the proposed FABC-based cluster head selection is compared with LEACH, PSO and ABC-based routing using life time, and energy. The results proved that the proposed FABC maximizes the energy as well as life time of nodes as compared with existing protocols.  相似文献   

15.
基于LEACH协议的无线传感器网络路由算法的改进与仿真   总被引:2,自引:0,他引:2  
针对无线传感器网络中传感器能量有限的问题,从路由算法的角度出发,提出LEACH协议的低功耗改进方案.本文采用划定区域的方式对LEACH协议中的簇头选举进行改进,从而减少网络中节点分布不均匀的情况对簇头节点能量损耗所造成的影响,并使用NS-2进行协议改进前后的仿真.仿真实验结果表明,协议改进后网络生存期有效增长,能量消耗...  相似文献   

16.
如何节约能量,一直是无线传感器网络(WSN)的关键问题.通过将能量问题与无线传感器网络的通信协议进行结合,在低能量自适应聚类(LEACH)协议的基础上进行可行的改进,并采用NS2进行仿真验证.仿真结果表明,与原来的协议LEACH相比,改进后的协议L-NEW能有效地平衡节点能量消耗,延长了网络的生存时间.  相似文献   

17.
Wireless sensor network consists of sensor nodes with battery operated device. The key challenges in the wireless sensor network are energy consumption and routing optimization. This work presents the cluster based load balancing (CBLB) routing protocol. The proposed routing protocol is used to minimize the energy consumption and increase the routing performance. It avoids the routing robustness, delay and increases the delivery rate and network performance. In existing techniques, different routing protocols such as LEACH, HEED and MESTER were used to increase the network performance and to decrease the energy consumption. But these existing techniques did not satisfy the performance requirements of wireless sensor networks. Hence, there is a requirement to develop a technique that meets the QoS requirements and needs of wireless sensor network. The proposed CBLB routing protocol creates a cluster head in the decentralized network and the cluster head will be used to distribute the workload evenly to the cluster members for reducing the energy consumption in wireless sensor network. Experimental results analyze the performance of the proposed protocol with the different existing protocols. The proposed protocol achieves high throughput, delivery rate and reduces the energy consumption, delay and routing overhead.  相似文献   

18.
详细介绍无线传感器网(WSN)两种代表性协议:信息协商传感器(SPIN)协议和低能量自适应分簇路由(LEACH)协议的概念、原理和优缺点。提出路由协议中需要进一步解决的问题。改进的WSN路由算法应尽可能降低节点能耗,以延长网络生存时间。  相似文献   

19.
One of the famous approaches to decision making is named as multicriteria decision making (MCDM). In order to solve the MCDM issues, a better way is provided by the fuzzy logic. Expendability, cost, maintenance, availability of software, and performance characteristics are such problems considered by the decision. The precise estimation of the pertinent data is one of the vital phases in DM systems. This paper presents a fuzzy MCDM‐based cluster head (CH) selection and hybrid routing protocol to solve the most common issues. In this research article, the generalized intuitionistic fuzzy soft set (GIFSS) approach is utilized to select the optimal CH, and hybrid shark smell optimization (SSO), and a genetic algorithm (GA) is introduced for the effective routing. Initially, the wireless sensor network (WSN) system and energy models are designed, and then the nodes are grouped into several clusters. Next, based on the GIFSS, the CH nodes are selected, and finally, an effective routing is placed based on the hybrid optimizations. The implementation is performed on the NS2 platform, and the performances are evaluated by packet delivery ratio (PDR), delay, packet loss ratio (PLR), network lifetime, bit error rate (BER), energy consumption, throughput, and jitter. The existing approaches named energy centers examining using particle swarm optimization (EC‐PSO), variable dimension‐based PSO (VD‐PSO), energy‐efficient PSO‐based CH selection (PSO‐ECHS), low‐energy adaptive clustering hierarchy‐sugeno fuzzy (LEACH‐SF), SSO, and GA are compared with the proposed strategy. According to the implemented outcomes, it displays the proposed strategy and gives improved outcomes than the others.  相似文献   

20.
Wireless sensor networks (WSNs) are composed of many low cost, low power devices with sensing, local processing and wireless communication capabilities. Recent advances in wireless networks have led to many new protocols specifically designed for WSNs where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. Minimizing energy dissipation and maximizing network lifetime are important issues in the design of routing protocols for WSNs. In this paper, the low-energy adaptive clustering hierarchy (LEACH) routing protocol is considered and improved. We propose a clustering routing protocol named intra-balanced LEACH (IBLEACH), which extends LEACH protocol by balancing the energy consumption in the network. The simulation results show that IBLEACH outperforms LEACH and the existing improvements of LEACH in terms of network lifetime and energy consumption minimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号