首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高直链型聚丙烯(PP)的发泡性能,选用三烯丙基异氰脲酸酯(TAIC)为交联剂与PP共混热压成PP片材,用伽玛射线对PP片材进行辐射改性。采用超临界二氧化碳发泡技术对不同TAIC含量和不同吸收剂量PP片材进行发泡研究。结果表明,TAIC的质量分数为0.5%~2%时,PP较为适宜发泡。当TAIC质量分数为2%(PP2)时,辐射交联增加了PP2的交联度,降低了PP2的熔体流动速率,提高了PP2的发泡性能。PP2片材吸收剂量为10 k Gy时,交联最为充分,此时PP2发泡的性能较好(泡沫的泡孔尺寸分布均匀,体积膨胀率为15)。在相同的发泡条件下,辐照改性PP2的泡孔直径大小随吸收剂量的增加而增大。  相似文献   

2.
用聚丙烯(PP)与纳米伊蒙土(ISIC)熔融共混制备片材,采用γ射线辐照PP/ISIC共混片材,并利用超临界二氧化碳(scCO_2)发泡技术对其进行发泡。研究了吸收剂量、ISIC添加量和发泡温度对泡孔结构的影响。结果表明,吸收剂量为30kGy时,PP/ISIC样品泡沫具有较好的泡孔结构,且随着ISIC含量增加,发泡材料孔径减小,孔密度增大。加入3%(wt,质量分数)的ISIC后,发泡样品的平均孔径从57μm减少到25μm,泡孔密度从1.3×10~7个/cm~3提高至1.1×10~8个/cm~3。经过共混和辐照处理的PP发泡温度窗口变宽。  相似文献   

3.
以聚丙烯(PP)/nano-TiO2复合材料为研究对象,采用快速降压超临界微孔发泡技术,制备了泡孔密度、泡孔直径分别为2.8×107cell/cm3~3.15×109cell/cm3,46.36μm~6.08μm的PP/nano-TiO2微孔复合材料。研究了复合材料中nano-TiO2的质量分数、饱和压力及发泡温度对PP/nano-TiO2复合材料发泡行为的影响,通过扫描电镜(SEM)对微孔形貌进行表征。结果表明,加入nano-TiO2可以改善PP的发泡性能,并得到泡孔分布均匀的闭孔发泡材料;随复合材料中nano-TiO2质量分数由1%提高到5%,泡孔密度增加,泡孔直径减小。对于nano-TiO2质量分数为3%的PP/nano-TiO2复合材料,随着饱和压力的增加,泡孔直径和泡孔密度都增加;随着发泡温度的升高,泡孔密度减小,泡孔直径变大。  相似文献   

4.
在过氧化二异丙苯(DCP)引发下,研究三烯丙基异氰脲酸酯(TAIC)对聚丙烯(PP)的交联改性,比较单纯DCP和DCP/TAIC交联体系对PP熔体强度及其发泡性能的影响。加入TAIC前后,分别对PP的抗熔垂能力和熔体流动速率、PP发泡材料的凝胶率和力学性能进行测定。结果表明,与单纯DCP相比,DCP/TAIC交联体系对PP熔体强度的改善效果较好,而且相应的发泡材料具有较高的拉伸强度和直角撕裂强度,同时,偏光显微镜观察结果表明,经DCP/TAIC交联后的PP发泡材料表面更为光滑、泡孔细密且均匀一致。  相似文献   

5.
以β-环糊精(BC)为成核剂,通过微孔注塑发泡工艺制备了发泡聚丙烯(PP)复合材料。采用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等技术,研究了不同含量BC (0.25%~7%,质量分数,下同)对发泡聚丙烯复合材料发泡性能及力学性能的影响。结果表明:随着BC的加入,PP的发泡性能得到明显改善。添加7%的BC可以得到理想的泡孔形貌,泡孔直径为27.17μm,密度达1.23×10~7cell/cm~3。BC的加入使PP的结晶温度、结晶速率、粘度均有明显改善,有利于PP在更高温度下结晶并防止泡孔坍塌和并泡。与发泡聚丙烯材料相比,发泡PP/BC复合材料的拉伸、弯曲、冲击强度分别提高了21.2%、7%、12%。  相似文献   

6.
目的 揭示发泡剂含量对微发泡注塑成型秸秆纤维/聚丙烯复合材料(SF/PP)密度及力学性能的影响规律,提供制备低密度高性能SF/PP材料的发泡剂用量工艺参考。方法 以偶氮二甲酰胺(AC)为化学发泡剂,制备了注塑发泡SF/PP,利用扫描电子显微镜、电子万能实验机和红外光谱测试等手段,分析了不同发泡剂含量下SF/PP的拉伸、弯曲、冲击性能、泡孔微观形貌和分布以及复合材料红外光谱图,通过实验对比分析了不同发泡剂含量下材料性能的变化规律。结果 当AC含量增加时,微发泡SF/PP的密度先降低后升高,冲击强度则先升高后降低,拉伸和弯曲强度为逐渐降低。当AC的质量分数为4%时,微发泡SF/PP的综合性能最佳,泡孔结构最好;微发泡(SF/PP)红外光谱图结果显示,在3420cm-1处的—OH伸缩振动峰强度高于未发泡复合材料的,这表明秸秆纤维表面极性增大,秸秆纤维与树脂之间的结合性变差,导致微发泡SF/PP的拉伸强度低于未发泡材料的。结论 适当增加AC含量可使复合材料获得微小、致密的泡孔微观结构,降低材料密度,提升产品的力学性能;但当AC含量过多时,泡孔坍塌会使泡孔直径增大、泡孔结构...  相似文献   

7.
通过挤出制备了三种不同聚四氟乙烯微粉(PTFE)含量(1.0%、5.0%、10.0%,质量分数)的聚丙烯/聚四氟乙烯(PP/PTFE)共混物样品,采用超临界二氧化碳(scCO2)作为物理发泡剂对样品进行间歇发泡,研究了发泡样品的微观泡孔结构,并分析其形成机理。结果表明:挤出剪切作用下由分散PTFE为原料制造的微粉可以变成具有一定长径比的纤维状,并相互缠结形成网状结构,进而显著增加PP的熔体强度。流变性能测试结果表明,在低频区PP/PTFE复数黏度增强更加明显;制备的PP/PTFE发泡材料具有良好的微孔结构,泡孔均匀性明显改善,且随着PTFE添加量的增加,发泡材料孔径变小(平均值约31μm),孔密度增加10倍,达到7.4×10~8cells/cm~3,这归因于在发泡过程中PTFE颗粒增强PP异相成核且较高的熔体强度保证了完整泡孔的形成。相比于纯PP泡沫材料,PP/PTFE(1.0%)泡沫具有较大的发泡倍率,发泡倍率可达8倍,拉伸应力从原来6 MPa增加到11 MPa,断裂伸长率从107%增加到230%。  相似文献   

8.
采用反应型双螺杆挤出机,用过氧化物(BPO)为交联剂、不饱和烯烃为交联助剂,对PP/EPDM体系进行反应增容,一步实现聚丙烯(PP)与少量EPDM的共混、接枝与交联,制备出了具有高熔体黏度的发泡用聚丙烯.对改性材料熔体流动性能、力学性能和发泡性能研究结果表明:当交联剂、交联助剂的质量比约为0.78 :1时,可以获得最佳的改性效果,改性后体系的熔体流动速率(MFR)下降92.9%;改性PP的多项力学性能都有显著改善,其中拉伸强度提高12.9%,缺口冲击强度提高93%;改性使材料的发泡性能得到显著提高,采用反应共混改性PP可获得泡孔大小约100μm,泡沫密度在0.44g/cm3左右,且分布均匀,闭孔率高的发泡材料.  相似文献   

9.
以化学发泡为主线,在聚丙烯(PP)基体中添加弹性体三元乙丙橡胶(EPDM)制备微发泡聚丙烯复合材料。利用旋转流变仪、差示扫描量热法和扫描电镜等手段,系统地研究EPDM对微发泡PP材料发泡行为的影响。结果表明,EPDM的加入提高了PP材料的熔体强度,对PP材料发泡质量有明显改善;同时使PP复合材料的降温结晶峰向高温移动,能有效抑制泡孔的变形及并泡等恶化现象。当EPDM的质量分数为20%时,泡孔形态较为理想,其泡孔直径和泡孔密度分别为14.43μm,2.49×107cm-3。与未加EPDM的微发泡PP复合材料比较,EPDM的加入能够拓宽发泡PP复合材料的发泡温度窗口,发泡温度范围为180~195℃。  相似文献   

10.
采用密炼方式分别制备碳纤维(CF)、玻璃纤维(GF)、芳纶纤维(AF)增强聚丙烯(PP)母粒,通过注塑成型制备相应的聚丙烯/纤维复合发泡材料,研究了3种纤维对微发泡聚丙烯/纤维复合发泡材料力学性能的影响。结果表明,PP/CF复合发泡材料的综合性能提高的幅度最大,其中拉伸、压缩、弯曲强度分别提高了100.9%,80.4%,126.5%;PP/AF复合发泡材料的韧性最好,相对于纯PP提高了151.2%;并且,PP/CF复合发泡材料的泡孔参数最好,泡孔尺寸为28.97μm,泡孔密度为8.58×106cm~(-3),泡孔尺寸分布达到9.22μm。  相似文献   

11.
通过高压CO_2流体物理发泡方法制备了微交联的三元乙丙橡胶(EPDM)纳米复合泡沫材料。研究了EPDM/SiO_2纳米复合材料的交联动力学,纳米复合发泡材料的发泡倍率、泡孔形貌及拉伸性能,探讨了纳米粒子对EPDM交联行为和物理发泡行为的影响。研究结果表明,纳米SiO_2的添加加快了EPDM的交联速率,但降低其交联程度;同时,纳米SiO_2添加量的增加提高了EPDM发泡材料的膨胀倍率至10.3倍,加强了泡孔成核,使泡孔密度从10~5个/cm~3增加至10~8个/cm~3,提高了发泡材料的拉伸性能,其中拉伸强度从0.75MPa提升至1.65 MPa,断裂伸长率从225%提升至423%。不过,当添加量为5phr时,纳米SiO_2对EPDM的发泡行为及其发泡材料的拉伸性能产生负面影响。所制备的EPDM/SiO_2复合发泡材料具有微交联结构,模压后的薄膜可再次进行物理发泡。  相似文献   

12.
采用化学发泡法制备了聚丙烯/聚丙烯接枝马来酸酐/环氧树脂(PP/PP-g-MAH/EP)微孔复合发泡材料,研究了EP粉体含量对其发泡行为及力学性能的影响。结果表明,EP粉体在发泡过程中起异相成核作用,且与PP-g-MAH反应形成的交联网络结构提高了复合材料的熔体强度,从而显著改善了泡孔结构。随着EP含量增加,微孔发泡材料的拉伸强度、弯曲强度和冲击强度都呈现先增大后减小的趋势。当EP含量为5%时,复合材料的泡孔尺寸最小,泡孔密度最大,泡孔分布最均匀,微孔发泡材料的冲击强度最大;当EP含量为1%时,拉伸强度、弯曲强度最大,发泡材料的综合力学性能最佳。  相似文献   

13.
采用高压釜间歇式发泡法,结合超临界CO2微孔发泡技术制备了发泡木粉-纳米蒙脱土(NMMT)/聚丙烯(PP)复合材料。通过对复合材料的结晶行为、流变性能、泡孔形貌及压缩性能进行分析,主要研究了NMMT对其微孔结构及力学性能的改善作用。结果表明:NMMT的引入使木粉/PP复合材料中PP基体的结晶速率加快,结晶度减小,有利于发泡均相体系的形成和泡孔生长;PP分子链的运动受到NMMT片层的抑制作用,导致木粉/PP复合材料的熔体弹性提高,泡孔合并与塌陷的现象减少,发泡材料的平均泡孔直径从30.4 μm降低至20.3 μm,并且泡孔尺寸的均匀性得到明显改善,压缩强度和模量分别提高了187%和223%。   相似文献   

14.
以H_2O_2溶液(质量浓度30%)为发泡剂,粗、细膨胀珍珠岩颗粒为轻集料和发泡剂载体,明胶为稳泡剂,采用将加载发泡剂的载体拌入轻集料混凝土的水泥浆中原位化学发泡的方法,制备出了系列轻混凝土试样,并对其性能进行了系统表征。结果表明,原位发泡轻混凝土中外加1.5%(质量分数)胶凝材料量的稳泡剂后,对气泡有较为理想的稳泡作用,可获得均匀分布的细小气泡(气泡直径0.5~1mm)。原位发泡轻混凝土的体积密度随发泡剂量增加而降低,随稳泡剂量的增加而增大。当稳泡剂为胶凝材料量的1.5%(质量分数)时,原位发泡轻混凝土试样的抗压强度和导热系数均随着发泡剂量的增加而降低。其中,发泡剂量为胶凝材料量1.4%(质量分数)试样的28d抗压强度为21 MPa,体积密度为940kg/m3,比不发泡试样的强质比提高了14%,导热系数降低了13%。  相似文献   

15.
采用挤出发泡的方法制备了聚乙烯醇(PVA)/淀粉(St)泡沫,研究了机头压力、淀粉含量和成核剂二氧化硅(SiO_(2))对泡孔结构的影响,探索了定应变和变应变下泡沫的压缩特能。结果表明,挤出发泡棒材泡孔尺寸从中心到边缘呈梯度递减的趋势,提高转速能有效增大模头熔体压力、减小泡孔尺寸、提高泡孔密度。通过控制淀粉和SiO_(2)含量可调控泡沫的泡孔结构,提高SiO_(2)含量可使泡沫具有更加均匀的泡孔结构、更小的泡孔直径,而提高淀粉含量可使PVA/St材料的熔体黏度下降、泡孔结构均匀性下降、泡孔壁增厚。循环压缩结果表明,增加淀粉和SiO_(2)含量可以增强泡沫的压缩强度,当淀粉质量分数为30%、SiO_(2)质量分数为3%时,泡沫压缩强度达到350 KPa、回弹率达到89.4%。泡沫的能量吸收量和吸能效率随淀粉含量的增加而上升,但在定应变模式下,随循环次数增加而下降,随应变的增加而上升。  相似文献   

16.
用熔融共混的方法制备了不同含量乙烯-辛烯共聚物(POE)的聚丙烯(PP)/乙烯-辛烯共聚物(POE)的共混物,研究了共混物的相形态和流变性能。用超临界二氧化碳(sc-CO_2)作为物理发泡剂,制备了PP/POE的共混物微孔发泡材料。研究了POE含量、温度和压力对微孔发泡材料泡孔的影响。结果表明,发泡材料平均泡孔尺寸在2~7μm之间,泡孔密度大于109 cm~(-3)。随着POE含量的增加、温度的升高,泡孔直径增大,泡孔密度降低;随着压力的增大,泡孔尺寸先增大后减小,泡孔密度逐渐增大。  相似文献   

17.
文中以高压CO_2为发泡剂,通过固态间歇发泡法制备了聚对苯二甲酸乙二醇酯(PET)微孔发泡材料,研究了PET的结晶度对其发泡行为的影响。首先,利用PET的结晶特性在合适的条件下进行退火,制备出具有不同结晶度的原始样品。差示扫描量热分析数据表明,当退火温度为110℃,退火时间为10min时,PET的结晶度从8.07%(无定形态)提高到16.00%(结晶态),且其结晶度随着退火时间的延长进一步提高。其次,采用快速升温法对PET片材进行物理发泡并结合CO_2在PET基体内的扩散与PET结晶之间的关系对其发泡行为进行了研究。扫描电镜测试表明,随着PET原始样品结晶度的增加,其发泡材料的泡孔尺寸逐渐减小,泡孔密度逐渐增大;此外,对于同一样品,发泡温度越高,得到的泡孔尺寸越大。  相似文献   

18.
模压法制备微孔发泡聚碳酸酯片材   总被引:1,自引:0,他引:1  
为制备采用微孔挤出法、微孔注射法及常规发泡方法难以制备的薄型微孔发泡聚碳酸酯(PC)片材,首次采用具有制备周期短、工艺简单、操作容易、制备价格低廉等优点的模压法,通过快速降温降压制备了薄型微孔发泡PC片材,并探讨了加工参数对泡孔结构的影响,利用显微镜对泡孔结构进行了表征.实验结果表明:随着发泡时间的增加,泡孔尺寸先增加后恒定不变,泡孔密度先增加后降低;随发泡压力的增加,泡孔尺寸快速减小后变化不大,泡孔密度先快速增加后变化较小;随着发泡温度的增加,泡孔尺寸快速增加,泡孔密度快速降低;随活化比的增加,泡孔尺寸先减小后增加,泡孔密度则先增加后降低.通过控制发泡时间、发泡压力、发泡温度、活化比等加工参数可以控制微孔发泡PC的泡孔结构.  相似文献   

19.
针对EVA无卤阻燃发泡体系,研究了氢氧化镁(MH)、氢氧化铝(ATH)和红磷3种阻燃剂对EVA体系发泡性能的影响。结果表明:添加MH、ATH会使体系的粘度、发泡压力提高,交联度下降,过量的MH和ATH会导致发泡材料表面鼓泡,发泡倍率降低。添加红磷,体系的粘度、交联度下降,发泡压力、发泡倍率增大。为了保证EVA材料的顺利发泡,MH、ATH单独使用时,添加量分别不超过55%和50%(质量分数),阻燃剂复配使用时,添加量不能超过50%(质量分数)。添加MH、ATH和红磷会影响EVA材料的发泡性能。  相似文献   

20.
以偶氮二甲酰胺(AC)为发泡剂制备了改性双马来酰亚胺(BMI)泡沫,用扫描电镜(SEM)对泡沫的微观形貌进行观察,研究泡沫的发泡过程及不同条件下泡沫的泡孔结构,包括密度、孔径、单位体积的泡孔数目、发泡倍率等。结果表明:改性的BMI泡沫是一种闭孔结构泡沫,其构型为排泄型十二面体。可通过发泡体系的黏度、温度和发泡剂含量控制BMI泡沫的结构,随发泡体系黏度的增加,泡沫密度,成核密度N0和单位体积的泡孔数目Nf增加,泡孔直径减小,均匀性变好。泡沫密度随发泡剂AC含量提高而降低,当AC含量超过7%(质量分数)时,泡沫密度反而上升。随发泡温度提高,泡沫密度降低,孔径增大,泡沫成型稳定性变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号