首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以4,4-二苯醚二甲酸(OBBA)、丁二酸(SA)和1,4-丁二醇(BDO)为原料,以钛酸四丁酯(TBOT)为催化剂,采用先酯化后缩聚的两步聚合法制备了一系列聚(丁二酸丁二醇-co-二苯醚二甲酸丁二醇)酯(PBSO),研究了二元酸单体SA与OBBA的摩尔比(10∶0、9∶1、7∶3、5∶5、3∶7、1∶9、0∶10)对聚酯的结构、热性能、流变性能和力学性能的影响。红外光谱和核磁共振氢谱分析表明成功地制备了脂肪族-芳香族共聚酯,M_w在22070~43530之间,多分散性指数(PDI)在2.0左右。差示扫描量热分析和X射线衍射结果表明PBS和PBSO(9∶1)为结晶聚合物,结晶度分别为43%和24%,其它共聚酯均为无定形聚合物。随着共聚酯中OBBA单体含量的增加,共聚酯的T_g逐渐升高。热重分析结果表明共聚酯初始分解温度均高于275℃。流变性能分析表明,共聚酯均属于典型的假塑性流体,其中,PBSO(5∶5)的黏度对剪切具有较高的敏感性。拉伸测试结果表明,随着OBBA单体含量增加,聚酯拉伸强度先下降后上升,断裂伸长率先增加后降低。其中,PBSO(5∶5)的拉伸强度为1.2 MPa,断裂伸长率最大为1523.2%,表现出良好的韧性,且循环拉伸测试表明PBSO(5∶5)的拉伸永久变形在10~30℃内对温度具有敏感性。  相似文献   

2.
用热失重(TG)和F lynn方法(等转化率方法)研究了聚丁二酸乙二醇酯(PESu),聚丁二酸丁二醇酯(PBSu),聚丁二酸已二醇酯(PHSu),聚癸二酸己二醇酯(PHSe)的热稳定性。结果表明,这些聚酯的热分解温度和分解活化能均随酯基浓度的降低而升高。该研究可对脂肪族聚酯的分子设计、合成和加工工艺提供参考。  相似文献   

3.
以丁二酸-丁二醇-尿素(PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(PBAu)聚酯酰脲共聚物为预聚物,甲苯-2,4-二异氰酸酯(TDI)为扩链剂,通过熔融共聚成功地制备了可降解聚酯酰脲嵌段共聚物(PBSu-co-PBAu)。采用核磁共振氢谱(1HNMR)、热重分析仪(TG)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)、万能拉力试验机以及水降解测试表征了共聚物的结构与性能。研究发现,随着PBAu含量的增加,嵌段共聚物塑性提高。合成得到的嵌段共聚物具有优异的热稳定性能和良好的生物降解性能,且具有比均聚物PBSu和PBAu以及未改性的聚酯PBS和PBA更好的拉伸性能。此外,还可以通过改变PBSu和PBAu的进料比,对材料的热性能、降解性能和力学性能进行一定范围的调节。  相似文献   

4.
生物降解PBAT的合成与表征   总被引:1,自引:0,他引:1  
为利用废弃PET制备生物降解的脂肪-芳香族共聚酯材料,研究了废弃PET在1,4-丁二醇存在下醇解制备聚对苯二甲酸丁二醇酯低聚物(BHBT),己二酸与丁二醇反应制备聚己二酸丁二醇酯(PBA)的条件,BHBT和PBA缩聚成脂肪-芳香族共聚酯(PBAT)的影响因素,结果表明,采用废弃PET成功制备了有良好的生物降解性能的脂肪-芳香族共聚酯PBAT.  相似文献   

5.
将不同比例的聚丁二酸丁二醇酯(PBS)和聚ε-己内酯(PCL)经过混炼、压膜成型制成PBS/PCL共混聚酯。通过红外(FT-IR)、热失重(TG)、X-射线衍射(XRD)、偏光显微镜、拉力测试对聚酯的化学结构、热性能、结晶度、表面形貌、拉伸性能等进行了研究。结果表明:共混聚酯的热稳定性随着PBS含量的增加而增强;结晶度随着共混比例的变化呈现减少、增加、又减少的趋势,PBS/PCL60结晶度最大达到58%,聚酯结晶均以球晶为主;延展性随着PCL比例的增加而增强。  相似文献   

6.
含PCL和PBST链段聚酯聚氨酯的合成与表征   总被引:1,自引:0,他引:1  
为提高PBS基脂肪族聚酯的综合性能,通过ε-己内酯的开环聚合制备了端羟基的聚己内酯(PCL-OH),再通过熔融缩聚法制备了端羟基的聚(丁二酸丁二醇酯对苯二甲酸丁二醇酯)无规共聚物(PBST-OH),用氢化MDI(H12MDI)作为扩链剂,制得了可生物降解的聚酯聚氧酯(PPCLBST).采用核磁共振谱和红外光谱确定了PP...  相似文献   

7.
以1,4-丁二醇与不同链长二元酸单体为原料,合成了聚丁二酸丁二醇酯(PBS)和聚辛二酸丁二醇酯(PBSub)2种均聚酯和4种不同比例聚(丁二酸-co-辛二酸丁二醇)共聚酯。以上述6种聚酯为降解底物,利用角质酶对其进行降解研究。通过衰减全反射傅里叶变换红外光谱、核磁共振波谱仪、差示扫描量热仪、X射线衍射仪和热重分析仪等对聚酯及其降解产物进行表征分析。6种聚酯的晶体结构、熔点、结晶度和热稳定性变化不大。研究表明,聚酯的结晶度和熔点温度是影响其酶降解的重要因素。角质酶降解共聚酯的结晶区和非结晶区,但优先降解非结晶区。丁二酸/辛二酸投料摩尔比为4/6和6/4的降解效果最好,但摩尔比为6/4的样品熔点较高,为最佳比例。  相似文献   

8.
用差示扫描量热法(DSC)和修正的Avrami方程研究了聚丁二酸乙二醇酯(PES)、聚丁二酸丁二醇酯(PBS)、聚丁二酸己二醇酯(PHS)、聚己二酸己二醇酯(PHA)和聚癸二酸己二醇酯(PHSe)的非等温结晶动力学,得到了脂肪族聚酯的Avrami指数、结晶速率常数、结晶活化能和过冷度等结晶动力学参数.结果表明,脂肪族聚...  相似文献   

9.
聚丁二酸丁二酯(PBS)基脂肪族聚酯是目前广受关注的可生物降解高分子材料之一,总结概述了其制备、改性、降解及应用等方面的进展。其中,PBS基脂肪族聚酯的制备工艺主要包括熔融缩聚法、溶液聚合法、酯交换法和扩链法等,改性方法涵盖物理共混改性、增塑改性、扩链改性和交联改性等。此外,阐述了PBS基脂肪族聚酯生物降解方面的现状,包括土壤掩埋降解、微生物降解和酶降解等,最后概括了PBS基脂肪族聚酯的应用及未来发展方向。  相似文献   

10.
通过熔融缩聚反应合成了聚丁二酸乙二醇酯(PES)、聚丁二酸丁二醇酯(PBS)和它们的共聚酯——聚(丁二酸乙二醇-co-丁二酸丁二醇酯)(P(ES-co-BS)s),对所合成的聚酯进行了一系列的物理性能及酶水解研究.结果表明,在纯PES中掺入BS单元改变了PES的晶体结构、微晶尺寸和结晶度,其中,ES/BS摩尔比为54/46的P(ES-co-BS46)具有最大的微晶尺寸和最低的结晶度.P(ES-co-BS)s共聚酯的断裂伸长率均高于纯PES和PBS.所合成的P(ES-co-BS)s共聚酯的热分解温度均高于290℃,具有良好的热稳定性.利用角质酶对所合成的聚酯进行酶水解测试,水解速率依次为P(ES-co-BS46)>P(ES-co-BS56)>P(ES-co-BS65)>PES>PBS.其中,P(ES-co-BS46)具有较低的熔融温度、结晶度和较高的亲水性能,酶水解速率较快.  相似文献   

11.
采用Rosand RH7型毛细管流变仪,对以间苯二甲酸丙二醇酯-5-磺酸钠(SIPP)为第三改性单体、以聚1,6-己二酸-1,4-丁二醇酯(PBA)或聚乙二醇(PEG)为第四改性单体的阳离子染料可染聚对苯二甲酸丙二醇共聚酯(PTT)的流变性能进行了研究。结果显示,在200 s-1<γ<1000 s-1时,PTT共聚酯的剪切黏度急剧下降,表现出明显的剪切变稀特性;SIPP的添加使共聚酯的粘流活化能增加,而PBA或PEG能降低共聚酯的粘流活化能;共聚酯的非牛顿指数均在0.6~0.8之间,并随温度升高而增大,因此升高温度能改善共聚酯熔体的流动性能,这为开发新型阳离子染料可染PTT纤维提供了参考。  相似文献   

12.
陈庆  刘宏 《新材料产业》2009,(11):43-46
目前,全球已开发了多种基于不同原料的生物降解塑料,主要品种包括淀粉基生物降解塑料、聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚羟基烷酸酯(PHA)、聚己内酯(PCL)、二氧化碳共聚物脂肪族聚碳酸酯(APC)、脂肪-芳香共聚酯等等。其中,淀粉基生物降解塑料、聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)是当前国内外研究和开发最多、技术相对成熟、  相似文献   

13.
可降解脂肪族聚酯的合成及酶解性能研究   总被引:1,自引:0,他引:1  
采用溶液缩聚法合成了3种不同的脂肪族聚酯——聚琥珀酸乙二醇酯、聚琥珀酸丁二醇酯和聚琥珀酸己二醇酯。利用傅里叶变换红外光谱仪、核磁共振氢谱仪、差示扫描量热仪、热重分析仪、接触角测量仪、X射线衍射仪和力学拉伸仪对合成的聚酯进行分析表征,并研究了三者的酶解性能。实验结果表明:3种脂肪族聚酯综合性能较优,拉伸强度均超过30MPa,断裂伸长率均大于300%;3种聚酯的热分解温度高于294℃,热稳定性良好;酶解实验表明,降解12h时3种聚酯的降解率均超过95%,可降解性良好。其中,聚琥珀酸己二醇酯表现出最优力学性能、热稳定性和可降解性,其拉伸强度为33.4MPa,断裂伸长率为798.3%,热分解温度达到314℃,且在降解4h时失重率高达88.1%,11h可实现完全降解。  相似文献   

14.
以1,4-环己二酮-2,5-二甲酸二甲酯(DMSS)为起始原料,采用两步法成功制备了2,5-二甲氧基对苯二甲酸二甲酯(DMDMT)。分别以DMDMT和不同碳链的脂肪二醇为单体,在三氧化二锑的催化作用下,采用熔融共聚酯交换法合成了4种由脂肪族二元醇-芳香族二元酸构成的聚酯。经过溶解、沉淀、离心等分离手段,得到目标聚酯a~d。通过红外光谱、核磁共振氢谱、凝胶渗透色谱、差示扫描量热分析和热重分析对其进行表征和分析。聚酯a~d的PDI在1.95~2.70之间,数均相对分子质量(M_n)在10000~15200之间。研究了聚合物中分子主链柔顺性对聚合物的热性能的影响,其中,聚酯a的熔点(T_m)较高,达到90℃,其初始分解温度(T_(5%))高达363℃;随着脂肪族碳链的碳数增加,所合成的聚酯a~d的熔点和初始分解温度(T_(5%))下降,这为新型脂肪族-芳香族聚酯的分子设计与合成提供了有益的参考。  相似文献   

15.
以癸二酸、丁二酸为二元酸,丁二醇为二元醇,通过熔融共聚的方式合成了聚(癸二酸丁二醇酯丁二酸丁二醇酯)无规共聚物(SE10)和聚丁二酸丁二醇(PBS),并通过酶解实验研究了相对分子质量、结构、表面形态的变化。通过红外光谱、差示量热扫描仪、偏光显微镜、凝胶色谱和扫描电镜对二者降解前后性能进行了研究,相比PBS,SE10晶体直径较小,晶体结构形态变模糊,结晶度由68.0%下降为45.7%,熔点由115.23℃下降为92.40℃。90d后SE薄膜的质量损失率达到63%,珚Mw由34700降为11500,而PBS质量损失率为27%,珚Mw由49000降为33000。表明癸二酸的引入降低了PBS的结晶性能,提高了其降解性能。  相似文献   

16.
生物可降解聚丁二酸丁二醇酯的合成及两亲性改性研究   总被引:1,自引:0,他引:1  
脂肪族聚酯由于其生物降解性和经济性,已成为国内外降解材料研究的重点。以丁二酸和丁二醇为原料,通过熔融缩聚法合成聚丁二酸丁二醇酯(PBS),并通过与己内酯、聚乙二醇共聚,改善其降解性能。利用FT-IR、^1H-NMR、DSC、粘度法测定分子量等方法对共聚物组成、热学性能及亲水性能进行了研究。实验结果表明,改性后的聚酯高分子链有更好的柔韧性和亲水性,可以加快降解速率。  相似文献   

17.
为了改善淀粉/聚丁二酸丁二醇酯(PBS)共混材料的相容性和力学性能,文中以氯化镁/甘油为复配改性剂,采用熔融共混方法制备了改性淀粉/聚丁二酸丁二醇酯共混材料,研究了改性共混材料的红外吸收特性、形态结构、热性能、力学性能及结晶性能。研究结果表明,氯化镁和甘油可与淀粉/PBS共混材料产生强相互作用,破坏淀粉/PBS共混材料原有的氢键与结晶结构,提高淀粉与PBS的相容性,使共混材料的玻璃化转变温度、结晶温度、冷结晶温度及结晶度降低;采用氯化镁/甘油复配改性剂可制备出具有良好性能的淀粉/PBS共混材料,改性后的淀粉/PBS共混材料的断裂伸长率和拉伸强度均得到提高。  相似文献   

18.
为了改善淀粉/聚丁二酸丁二醇酯(PBS)共混材料的相容性和力学性能,文中以氯化镁/甘油为复配改性剂,采用熔融共混方法制备了改性淀粉/聚丁二酸丁二醇酯共混材料,研究了改性共混材料的红外吸收特性、形态结构、热性能、力学性能及结晶性能。研究结果表明,氯化镁和甘油可与淀粉/PBS共混材料产生强相互作用,破坏淀粉/PBS共混材料原有的氢键与结晶结构,提高淀粉与PBS的相容性,使共混材料的玻璃化转变温度、结晶温度、冷结晶温度及结晶度降低;采用氯化镁/甘油复配改性剂可制备出具有良好性能的淀粉/PBS共混材料,改性后的淀粉/PBS共混材料的断裂伸长率和拉伸强度均得到提高。  相似文献   

19.
文中以丁二酸、丁二醇和苄氧羰基保护的天冬氨酸为原料,通过熔融聚合法合成了聚(丁二酸丁二醇-co-CBz-天冬氨酸丁二醇)共聚酯(P(BS-co-BCD)),然后以Pd(10%(质量分数,下同))/C为催化剂高压氢化脱去保护基团得到含有活性氨基活性点的生物可降解聚(丁二酸丁二醇-co-天冬氨酸丁二醇)共聚酯(P(BS-co-BD))。利用凝胶渗透色谱(GPC)、红外光谱(FT-IR)、核磁共振波谱(NMR)等研究了共聚物的结构和性能。测试表明共聚酯的水接触角比聚丁二酸丁二醇酯(PBS)低,表明加入含有氨基活性点的天冬氨酸链段提高了材料的亲水性。  相似文献   

20.
以羟基或氨基封端的丁二酸-丁二醇-尿素(Poly(butylene-succinate-urea),PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(Poly(butyleneadipate-urea),PBAu)聚酯酰脲共聚物为预聚物,借助甲苯-2,4-二异氰酸酯(Toluene-2,4-diisocyanate,TDI)对两种预聚物进行扩链反应,得到一种新的含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物(PBSu-b-PBAu)。改变扩链时间、扩链温度、扩链剂含量进行了该嵌段共聚物的合成实验,并采用单因素选择法得到TDI扩链合成嵌段共聚物的最佳工艺条件。通过GPC、旋转流变仪、毛细管流变仪测定了最佳工艺条件下合成的不同进料比的嵌段共聚物的分子量和流变性能,结果表明含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物具有比PBSu和PBAu更高的黏度和更好的弹性效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号