首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以1,4-丁二酸(SA)和过量的1,4-丁二醇(BD)为反应物,通过熔融缩聚制备了羟基封端聚丁二酸丁二醇酯齐聚物(OH-PBS-OH),以甲氧基聚乙二醇(Me OPEG)与丁二酸酐进行半酯化得到含端羧基的预聚物,再用二氯亚砜对预聚物进行活化,得到含酰氯端基的预聚物(Me OPEG-COCl);以Me OPEG-COCl与OH-PBS-OH为反应物,通过溶液法合成聚乙二醇-聚丁二酸丁二醇酯-聚乙二醇(Me OPEG-PBS-PEGOMe)嵌段共聚物。利用红外光谱、核磁共振、差示扫描量热、广角X射线衍射、偏光显微镜等手段对共聚物的结构、结晶性能和酶降解性能进行研究。结果表明,Me OPEG-PBS-PEGOMe嵌段共聚物中,聚乙二醇(PEG)链段的引入未改变聚丁二酸丁二醇酯(PBS)链段的晶体结构,但结晶形态由球晶转变为麦穗状晶体;同PBS比较,Me OPEG-PBS-PEGOMe嵌段共聚物的结晶速率降低,酶降解速率加快。  相似文献   

2.
以癸二酸1,3-丙二醇酯(PPS)预聚物为软段,丁二酸丁二醇酯(PBS)预聚物为硬段,通过直接缩聚方式,合成了一系列聚(丁二酸丁二醇酯癸二酸1,3-丙二醇酯)嵌段共聚物(PBS-PPS)。通过红外光谱(IR)、核磁共振(1H-NMR)、差示扫描量热(DSC)、凝胶色谱(GPC)和扫描电镜(SEM)对产物进行了表征,研究了物料配比对共聚物的结晶性、热性能和降解性的影响。结果表明,合成产物为典型的聚酯结构,随着PPS链段的增加,共聚物的结晶度下降,PBS为68.00%,而PBS-PPS10∶3仅为35.50%;质量损失率增加,PBS在酶解液中10周内质量损失率为27%,而PBS-PPS10∶3为71%;相对分子质量降低程度增大,PBS下降了35%,而PBS-PPS10∶3为81%;共聚物表面形态的破坏程度和酯键的水解程度也有显著提高。  相似文献   

3.
生物降解聚丁二酸丁二醇/二甘醇酯的合成与性能研究   总被引:2,自引:1,他引:1  
肖峰  王庭慰  丁培  包艳华  王景春 《包装工程》2011,32(9):54-57,61
以丁二酸(SA)、1,4-丁二醇(BD)和二甘醇(DEG)为原料,通过直接聚合法合成了可生物降解的聚丁二酸丁二醇/二甘醇酯(PBDGS)。采用1H-NMR,GPC,DSC等对产物进行了表征,研究了物料配比对共聚酯热性能、力学性能、降解性能和亲水性的影响。结果表明,DEG的引入能够有效抑制聚酯链段的结晶能力,同时改善材料的亲水性,使其降解性能较纯PBS有显著提高。  相似文献   

4.
聚(丁二酸丁二醇酯丁二酸环己烷二甲醇酯)的合成与表征   总被引:4,自引:0,他引:4  
用熔融缩聚法合成了一系列聚(丁二酸丁二醇酯丁二酸环己烷二甲醇酯)的无规共聚物。用FT-IR,1H-NMR,DSC,TGA,XRD及水降解测试等方法表征了材料的结构与性能。通过DSC和TGA分析得到产物的熔点虽然较聚丁二酸丁二醇酯(PBS)有所降低,但是热分解温度却得到了提高;XRD测试结果表明,共聚物的晶体结构并没有发生改变;水降解测试结果表明,共聚物较PBS的降解速率有所提高。  相似文献   

5.
以丁二酸-丁二醇-尿素(PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(PBAu)聚酯酰脲共聚物为预聚物,甲苯-2,4-二异氰酸酯(TDI)为扩链剂,通过熔融共聚成功地制备了可降解聚酯酰脲嵌段共聚物(PBSu-co-PBAu)。采用核磁共振氢谱(1HNMR)、热重分析仪(TG)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)、万能拉力试验机以及水降解测试表征了共聚物的结构与性能。研究发现,随着PBAu含量的增加,嵌段共聚物塑性提高。合成得到的嵌段共聚物具有优异的热稳定性能和良好的生物降解性能,且具有比均聚物PBSu和PBAu以及未改性的聚酯PBS和PBA更好的拉伸性能。此外,还可以通过改变PBSu和PBAu的进料比,对材料的热性能、降解性能和力学性能进行一定范围的调节。  相似文献   

6.
采用羧基封端乳酸预聚物与聚乙二醇熔融缩聚合成了聚乳酸-聚乙二醇共聚物,并用GPC、FTIR、1H-NMR等方法表征了预聚物与共聚物,结果表明,预聚物的羧基封端率高于95%,预聚物的相对分子质量可由投料比(物质的量比)控制.热分析结果表明,共聚物中聚乳酸链段呈无规分布,而聚乙二醇链段能够形成结晶微区.力学性能测试结果表明,共聚物的断裂伸长率达371%,有望在聚乳酸韧性改性方面得到应用.  相似文献   

7.
研究了聚丁二酸丁二醇酯(PBS)及其共聚物聚丁二酸/己二酸-丁二醇酯(PBSA)薄膜在可控堆肥条件下的宏观生物降解行为,结果显示,PBS和PBSA薄膜具有良好的生物降解性能,降解过程经历三个阶段:诱导期、加速期和平坦期。对堆肥中的微生物进行分离和筛选,发现杂色曲霉菌对PBS和PBSA的生物降解能力最强。进一步研究PBS和PBSA薄膜在杂色曲霉菌作用下的微观生物降解行为,结果表明,PBSA薄膜比PBS薄膜具有更快的生物降解速率。  相似文献   

8.
本文以直接缩聚制得的聚乳酸(PLLA)和聚丁二酸己二酸丁二醇酯(PBSA)预聚物为原料,以1,4-苯基二噁唑啉(PBO)及六亚甲基二异氰酸酯(HDI)为双扩链/偶联剂,采用扩链/偶联法制备可生物降解多嵌段共聚物P(LLA-mb-BSA)。重点考察了反应条件对扩链/偶联反应的影响,并对共聚物的链结构、热转变和力学性能进行了初步研究。该法简便高效,可制得高分子量的多嵌段共聚物。P(LLA-mb-BSA)多嵌段共聚物的软、硬段不相容,PLLA硬段保持较好的结晶性,而软段当分子量较低时接近无定型结构,其力学性能可由组成在较大的范围内进行调节。  相似文献   

9.
生物降解聚丁二酸丁二醇/1,3-丙二醇酯的合成与表征   总被引:2,自引:2,他引:0  
以丁二酸、丁二醇和1,3- 丙二醇(1,3-PDO)为原料,采用熔融缩聚法,合成了-系列新型可降解的聚丁二酸丁二醇酯/丁二酸1,3- 丙二醇酯共聚物 P(BS-co-PDO).选用红外光谱仪和核磁共振仪对共聚物的化学结构进行了表征.研究了1,3-PDO的添加量对共聚物的相对分子质量、热性能、结晶性能、力学性能、透光率以及降解性能的影响.结果表明:随着1,3-PDO添加量的增加,共聚物的分子量、熔点和结晶度呈降低趋势;相对于聚丁二酸丁二醇酯而言,引入1,3-PDO组分的共聚物的热性能提高,柔韧性增强,断裂伸长率增大,透光率提高;降解测试结果表明,1,3-PDO组分含量越多,共聚物的降解性能越好.  相似文献   

10.
含PCL和PBST链段聚酯聚氨酯的合成与表征   总被引:1,自引:0,他引:1  
为提高PBS基脂肪族聚酯的综合性能,通过ε-己内酯的开环聚合制备了端羟基的聚己内酯(PCL-OH),再通过熔融缩聚法制备了端羟基的聚(丁二酸丁二醇酯对苯二甲酸丁二醇酯)无规共聚物(PBST-OH),用氢化MDI(H12MDI)作为扩链剂,制得了可生物降解的聚酯聚氧酯(PPCLBST).采用核磁共振谱和红外光谱确定了PP...  相似文献   

11.
辛酸亚锡催化下开环聚合制备聚乳酸(DL-PLA)-聚乙二醇(PEG)-聚乳酸三嵌段共聚物.用GPC、DSC、1 H-NMR、质量损失、静态接触角等方法在pH=7.4磷酸盐缓冲液中,37℃下研究了分子量Mn=400、1000和4000的PEG改性DL-PLA的降解行为.结果表明,PEG嵌段增强了共聚物的亲水性,降低了共聚物Tg,加速了共聚物降解,随着PEG分子量增加及两端DL-PLA链段增长,共聚物分子量下降速率加快.由研究结果得出,共聚物降解期间DL-PLA链段中的酯键随机断裂,PEG两端DL-PLA链段逐渐变短;降解后期DL-PLA链段进一步变短,并有短链DL-PLA均聚物产生,当PEG两端DL-PLA链段足够短时,共聚物在介质中溶解.  相似文献   

12.
采用未封端的聚乳酸(PLA1)和聚丁二酸丁二醇酯(PBS)通过大分子链末端直接脱水酯化反应制备聚乳酸-聚丁二酸丁二醇酯嵌段共聚体系(LB),并对比研究LB体系及纯PBS两种改性剂对封端聚乳酸(PLA)熔体流变性能的影响。流变测试结果证明,LB或PBS的添加均使PLA的储能模量有较明显的提高。但当改性剂的含量相同时,LB对PLA熔体流变性能的提高幅度明显高于PBS,这可能是因为在LB共聚体系中除传统的"海岛"结构外还形成了新的PLA1-PBS"核壳"结构。  相似文献   

13.
合成了以聚丁二酸丁二醇酯(PBS)为硬段,聚四氢呋喃醚(PTMO,分子量1000g/mol)为软段的可生物降解嵌段共聚物。采用核磁共振氢谱(1H-NMR)、傅立叶变换红外光谱(FT-IR)、差示扫描量热法(DSC)、偏光显微镜(POM)和原子力显微镜(AFM)对嵌段共聚物的结构、耐热性能、结晶形态和表面形貌进行了分析。结果表明,合成的目标产物为PBS/PTMO嵌段共聚物,随软段PTMO含量的增加,PBS硬段结晶温度和熔融温度降低,晶体尺寸变小;当PTMO质量分数低于50%,PTMO以非晶态形式存在时,PBS硬段晶体与PBS均聚物一样呈现环带球晶特征;当PTMO质量分数超过50%时,PBS晶体细小,无明显的环带球晶特征,且分散在非晶相中。  相似文献   

14.
生物可降解聚丁二酸丁二醇酯的合成及两亲性改性研究   总被引:1,自引:0,他引:1  
脂肪族聚酯由于其生物降解性和经济性,已成为国内外降解材料研究的重点。以丁二酸和丁二醇为原料,通过熔融缩聚法合成聚丁二酸丁二醇酯(PBS),并通过与己内酯、聚乙二醇共聚,改善其降解性能。利用FT-IR、^1H-NMR、DSC、粘度法测定分子量等方法对共聚物组成、热学性能及亲水性能进行了研究。实验结果表明,改性后的聚酯高分子链有更好的柔韧性和亲水性,可以加快降解速率。  相似文献   

15.
本文合成了以聚丁二酸丁二醇酯(PBS)为硬段,聚四氢呋喃醚(PTMO,相对分子质量1000)为软段的生物降解脂肪族聚醚酯热塑性弹性体,其中PTMO的质量分数为50%、60%、70%。采用核磁共振氢谱、差示扫描量热法、凝胶渗透色谱、力学性能测试对嵌段共聚物的结构、熔融行为、力学性能进行了表征。结果表明:合成的目标产物为PBS/PTMO嵌段共聚物;Mn和Mw分别达到5.0×104和13.0×104以上;软段PTMO的结晶温度(Tc)较低,分别为-17.9℃、-14℃和-17.4℃;而硬段的Tc较高,分别为54.6℃和46.3℃;合成的嵌段共聚物表现出热塑性弹性体的力学行为,拉伸强度分别为22 MPa、18 MPa和14 MPa;弹性恢复率性能测试表明合成的脂肪族聚醚酯热塑性弹性体具有较好的弹性恢复性能。  相似文献   

16.
采用直接法合成了线型和多臂星形聚乙二醇-聚L-乳酸嵌段共聚物((PLLA-b-PEG-b-PLLA和sPEG-b-PLLA)。研究了3种嵌段共聚物在37℃、pH=7.2的磷酸盐缓冲液中的降解机理。结果表明,共聚物降解后失重明显,亲水性降低;降解一定时间后共聚物的相对分子质量分布呈双峰分布,随着降解的进行,较低相对分子质量组分的相对分子质量并没有发生明显的变化。XRD数据表明,降解前后的主要组成为结晶PLLA嵌段;1H-NMR分析证实,共聚物的降解过程中PEG嵌段和PLLA嵌段内部的降解程度很小。说明sPEG-b-PLLA在中性水性体系中的降解主要发生在连接PLLA和PEG的酯键上,而PLLA嵌段则由于处于结晶态,降解程度很低。  相似文献   

17.
李绍龙  徐艺  陈农田  杨文锋 《材料导报》2018,32(16):2882-2888, 2896
高聚物的成型加工通常在非等温条件下进行。本工作研究了解聚合物的非等温结晶行为,对选择合适的加工方法、设备,设定合适的温度以及时间对制备综合性能优异的高分子产品具有十分重要的意义。利用Avrami和莫志深方法对可生物降解的聚丁二酸丁二醇酯-聚丁二酸二甘醇酯(PBS-b-PDGS)多嵌段共聚物的非等温结晶动力学进行了详细研究。结果表明,Avrami和莫志深方法适用于该体系的非等温结晶行为,PDGS的引入没有改变共聚物的结晶机理。聚合物的结晶温度随降温速率增大而降低,相同降温速率下共聚物的结晶温度随PDGS含量增加而减小,PDGS的稀释作用是导致聚合物结晶速率减小的原因。PBSb-PDGS共聚物的非等温结晶动力学研究为其实际加工成型提供了理论依据。  相似文献   

18.
使用丁二酸、丁二醇和聚乙二醇为原料,通过一步投料法进行熔融缩聚,制备了一系列聚丁二酸丁二醇酯-聚乙二醇(PBS-PEG)聚酯共聚物。采用核磁共振(1H-NMR)、凝胶渗透色谱(GPC)、广角X射线衍射仪(WAXD)、偏光显微镜(PLM)和接触角分析仪等表征手段对共聚物的结构和性能进行研究。研究结果发现,聚酯共聚物中,随着PEG链段含量的增加,共聚物的衍射峰强度逐渐降低;同时,随PEG含量增加,共聚物亲水性明显改善;此外,PBS-PEG聚酯共聚物在80℃等温结晶过程中可形成环带球晶形态。  相似文献   

19.
以羟基或氨基封端的丁二酸-丁二醇-尿素(Poly(butylene-succinate-urea),PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(Poly(butyleneadipate-urea),PBAu)聚酯酰脲共聚物为预聚物,借助甲苯-2,4-二异氰酸酯(Toluene-2,4-diisocyanate,TDI)对两种预聚物进行扩链反应,得到一种新的含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物(PBSu-b-PBAu)。改变扩链时间、扩链温度、扩链剂含量进行了该嵌段共聚物的合成实验,并采用单因素选择法得到TDI扩链合成嵌段共聚物的最佳工艺条件。通过GPC、旋转流变仪、毛细管流变仪测定了最佳工艺条件下合成的不同进料比的嵌段共聚物的分子量和流变性能,结果表明含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物具有比PBSu和PBAu更高的黏度和更好的弹性效应。  相似文献   

20.
以丁二酸、丁二醇、聚四氢呋喃醚(PTMO)和柠檬酸为原料,采用熔融缩聚法合成了微交联聚丁二酸丁二醇酯/聚四氢呋喃醚(c-PBS/PTMO)嵌段共聚物,其中PTMO质量分数为50%。采用核磁共振(1H-NMR)对其结构进行了表征;采用差示扫描量热(DSC)、乌氏黏度计和流变性能测试仪对其结晶熔融性能和流变力学行为进行了研究。研究表明,当加入的柠檬酸质量为PBS质量的1%时,聚合物凝胶含量为20.3%,特性黏数增加38%;使PBS硬段结晶熔融温度降低8.4℃,熔融焓、结晶焓和结晶度分别降低3.1 J/g、6.4 J/g和5.7%,但对PTMO软段影响较小;使嵌段共聚物的剪切储能模量和复数黏度提高,而损耗角tanδ降低。表明少量的柠檬酸的引入,有利于提高c-PBS/PTMO嵌段共聚物的熔体强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号