首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baseline values for heavy metals were proposed in Alicante (Spain), a representative agricultural area of the European Mediterranean region, as a basis to identify and assess soil contamination processes at regional level. Fifty-four agricultural plots were sampled and heavy metals concentrations were analysed for nine elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by atomic absorption spectrometry (AAS) after acid digestion with HNO(3) and HCl in a microwave oven. Heavy metal concentrations obtained in the study area were similar to concentrations analysed by other authors within the European Mediterranean region. However, some agricultural plots with a high heavy metal content were identified by statistical treatment (boxplots) as outliers and, therefore, were not considered for establishing baseline values. Baseline values in Alicante were proposed by taking into account the statistical approach extensively used elsewhere, which refers to the increase in the mean plus twice the standard deviation. The baseline values were: 0.7 mg/kg for Cd, 11 mg/kg for Co, 36 mg/kg for Cr, 28 mg/kg for Cu, 19,822 mg/kg for Fe, 402 mg/kg for Mn, 31 mg/kg for Ni, 28 mg/kg for Pb and 83 mg/kg for Zn. The experience gained in this work further suggests that baseline values for heavy metals should be proposed in other areas. This is necessary to facilitate the identification of soil contamination processes over the whole European Mediterranean region as a basis to undertaking appropriate action to protect soil resource quality.  相似文献   

2.
Concentrations of Al, Cd, Cr, Cu, Mn, Ni, Pb, U and Zn were determined in vegetables (leafy vegetables, fruit, root, grain and cereal), derived products (sugar, coffee, manioc flour, wheat flour, corn flour, and pasta) and animal products (meat, fish, milk) most frequently consumed by adult inhabitants of Rio de Janeiro city. A total of 90 samples were analyzed using inductively coupled plasma mass spectrometry (ICPMS) as the principal method following sample dissolution by dry and wet ashing. Generally, highest contributions for the intake of micronutrients (Cu, Mn, Ni and Zn) arise from bean, rice and wheat flour consumption. Meat, cow milk and the flours, wheat and manioc, are major sources of Al, Cd, Pb and U intake. The daily intake of nine elements via foodstuffs was estimated as: 3.4x10(-4) mg of U, 1.8x10(-3) mg of Cd, 2.8x10(-2) mg of Pb, 2.3x10(-2) mg of Cr, 8.9x10(-2) mg of Ni, 1.12 mg of Cu, 2.5 mg of Mn, 3.5 mg of Al and 4.8 mg of Zn. The intake of toxic elements ranged between 2.7% (Cd) and 30% (U) of the provisional tolerable daily intake and reference dose values indicating that food consumption is, at present, no critical factor for the uptake of these toxic metals, in the population studied here. Concerning micronutrients, the recommended values of daily intake of Cu and Mn are conveniently supplied by the diet; however, for Cr and Zn they are lower than the recommend daily allowance. Due to high metal concentrations and consumption rates, black bean is the foodstuff that provided the highest ingestion rates of Cu, Mn, Ni and Zn (36-60% of the reference dose), being therefore a very important source of micronutrient supply.  相似文献   

3.
The efficiency of Alyssum serpyllifolium ssp. lusitanicum (Brassicaceae) for use in phytoextraction of polymetallic contaminated soils was evaluated. A. serpyllifolium was grown on two mine-spoil soils (MS1 and MS2): MS1 is contaminated with Cr (283 mg kg(-1)) and MS2 is moderately contaminated with Cr (263 mg kg(-1)), Cu (264 mg kg(-1)), Pb (1433 mg kg(-1)) and Zn (377 mg kg(-1)). Soils were limed to about pH 6.0 (MS1/Ca and MS2/Ca) or limed and amended with NPK fertilisers (MS1/NPK and MS2/NPK). Biomass was reduced on MS2/Ca due to Cu phytotoxicity. Fertilisation increased biomass by 10-fold on MS1/NPK, but root growth was reduced by 7-fold compared with MS1/Ca. Plants accumulated Mn, Ni and Zn in shoots, and both metal content and transportation were generally greater in MS2 than in MS1. Zinc bioaccumulation factors (BF, shoot([metal])/soil([metal])) were significantly greater in MS2 than in MS1. However, metal yields were greatest in plants grown on MS1/NPK. Concentrations of EDTA-, NH(4)Cl- and Mehlich 3 (M3)-extractable Mn and Zn were greater after plant growth. Concentrations of M3-extractable Cr, Ni, Pb and Zn were increased at the rhizosphere. Sequential extractions showed changes in the metal distribution among different soil fractions after growth. This could reflect the buffering capacity of these soils or the plants' ability to mobilise metals from less plant-available soil pools. Results suggest that A. serpyllifolium could be suitable for phytoextraction uses in polymetallic-contaminated soils, provided Cu concentrations were not phytotoxic. However, further optimisation of growth and metal extraction are required.  相似文献   

4.
The concentration of metals, cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), and zinc (Zn) was measured in selected samples of honey in Nigeria with a view to providing information on the regional concentration profile of metals in these honeys. The honey samples were digested with a mixture of acids and analysed for metal concentrations using atomic absorption spectrophotometry. The concentrations of metals (mg kg?1) in these honeys ranged from < 0.3 for Cd,<0.50–39.75 for Pb,<0.25–6.98 for Ni,<0.25–55.25 for Cr,<0.25–71.25 for Cu,<0.25–3.50 for Co,<5.0–163.15 for Fe,<11.0–31.75 for Mn and 1.0–31.0 for Zn. The concentrations of metals were relatively high but lower than their respective permissible limits in food except for Pb and Cu in some samples. The regional distribution patterns of metals indicated that honey samples from the Niger Delta region of Nigeria had higher mean concentrations of Ni, Cr, Co, Fe and Zn than honey samples from other regions. The honey samples from the northern region had higher mean concentrations of Pb and Cu.  相似文献   

5.
Concentrations of V, Mn, Cd, Zn, Ni, Cr, Co, Cu, Pb, Hg and Sb were measured on 70 topsoil samples collected from green areas and parks in the city of Palermo (Sicily) in order to: (1) assess the distribution of these heavy metals in the urban environment; (2) discriminate natural and anthropic contributions; and (3) identify possible sources of pollution. Mineralogy, physico-chemical parameters, and major element contents of the topsoils were determined to highlight the influence of 'natural' features on the heavy metal concentrations and their distribution. Medians of Pb, Zn, Cu and Hg concentrations of the investigated urban soils are 202, 138, 63 and 0.68 mgkg(-1), respectively. These values are higher, in some case by different orders of size, than those of unpolluted soils in Sicily that average 44, 122, 34 and 0.07 mg kg(-1). An ensemble of basic and multivariate statistical analyses (cluster analysis and principal component analysis) was performed to reduce the multidimensional space of variables and samples, thus defining two sets of heavy metals as tracers of natural and anthropic influences. Results demonstrate that Pb, Zn, Cu, Sb and Hg can be inferred to be tracers of anthropic pollution, whereas Mn, Ni, Co, Cr, V and Cd were interpreted to be mainly inherited from parent materials. Maps of pollutant distribution were constructed for the whole urban area pointing to vehicle traffic as the main source of diffuse pollution and also showing the contribution of point sources of pollution to urban topsoils.  相似文献   

6.
Concentration of heavy metals (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) as well as macronutrients (N, P, K, Ca, Mg, S) were measured in water, bottom sediments and plants from anthropogenic lakes in West Poland. The collected plants were: Phragmites australis, Potamogeton natans, Iris pseudoacorus, Juncus effusus, Drepanocladus aduncus, Juncus bulbosus, Phalaris arundinacea, Carex remota and Calamagrostis epigeios. Two reference lakes were sampled for Nymphaea alba, Phragmites australis, Schoenoplectus lacustris, Typha angustifolia and Polygonum hydropiper. These plants contained elevated levels of Cd, Co, Cr, Cu and Mn, and part of the plants contained in addition elevated levels of Mn, Fe, Pb, Ni and Zn. Analyses of water indicated pollution with sulfates, Cd, Co, Ni. Zn, Pb and Cu, and bottom sediments indicated that some of the examined lakes were polluted with Cd, Co and Cr. Strong positive correlations were found between concentrations of Co in water and in plants and between Zn in sediments and plants, indicating the potential of plants for pollution monitoring for this metal. Heavy metal accumulation seemed to be directly associated with the exclusion of Ca and Mg.  相似文献   

7.
The bamboo shark Chiloscyllium plagiosum is an abundant benthic species along the shallow continental shelf of Southeast Asia. It is commonly taken by fishermen in China, India, Taiwan and Thailand for human consumption. This study measured trace metal and organochlorine concentrations in C. plagiosum collected from the southern waters of Hong Kong, China. Metals (Ag, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were measured in three different tissues: dorsal muscle, spleen and liver. Polychlorinated biphenyls (PCBs) and chlorinated pesticides in the dorsal muscle were identified and quantified using gas chromatography. Metal concentrations varied among the three different tissues, with liver having higher levels of Ag and Cd, and spleen possessing higher levels of Cu and Mn. Both Ni and Pb in all tissues were below the detection limit. Tissue concentrations of Cr, Cu, Mn and Zn generally decreased with increasing body weight whilst no significant concentration-size relationship was found for other metals. In muscle tissues, total PCBs ranged from 1.056-4.771 ng/g (wet wt.) with a median of 1.801 ng/g, while total DDTs ranged from 0.602-23.55 ng/g with a median of 1.109 ng/g, in which p,p'-DDE was the predominant metabolite. Levels of total hexachlorohexanes and cyclodienes were low. The pesticide p,p'-DDT was the only compound found to be positively correlated with body weight, indicating temporal bioaccumulation of this compound. Zn concentrations in the muscle of C. plagiosum were comparatively higher than recorded in other shark species, however, concentrations of other metals and organochlorines were relatively low. C. plagiosum feeds primarily on polychaetes, shrimps and small fishes, and thus is unlikely to contain levels of contaminants of human health concern.  相似文献   

8.
Native and transplanted mosses of the species Fontinalis antipyretica were studied to assess their capacity as biomonitors of heavy metals. Assays were carried out with transplanted mosses (sampled from an unpolluted control stream) exposed for 60 days to five streams polluted with heavy metals. At the same time, native mosses were collected from the exposure sites. Concentrations of N, P, K, Ca, Mg, S, Fe, Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined in the mosses (native and transplants), stream waters, and sediments of both exposure and control sites. The results showed that the transplanted mosses accumulated significantly more Al, Cr, Cu, Pb, V, and Zn than the native mosses. The concentrations of Co and Mn in all streams were significantly higher in the native mosses.  相似文献   

9.
Soil samples were collected at 15-cm increments to a depth of 75 cm from plots on a silt loam soil where until several years earlier and for 14 years, anaerobically digested sewage sludge had been annually applied by furrow irrigation. The study protocol consisted of four replications of 6.1 x 12.2-m plots with 0 (T0), 1/4-maximum (T1), 1/2-maximum (T2) and maximum (T3) sludge application rates randomized within blocks. When sludge applications were terminated, maximum sludge-treated plots had received 765 Mg ha-1 (dry weight equivalent) of sludge solids. Total soil concentrations of Cd, Cr, Cu, Ni, Pb and Zn had been significantly enhanced by all sludge application rates to a soil depth of 30 cm. Below the 30-cm depth, total soil Cd was increased to 75 cm, total Zn to 45 cm (T2 and T3 only), total Cr to 60 cm (T2 and T3 only), but total Cu, Pb, and Ni were not increased at depth. Despite the lack of significant increases in subsoil concentrations for some metals, mass balance calculations showed a relatively high proportion of all the above sludge-borne heavy metals to be unaccounted for in the soil profile for each application rate. Mass balance calculations of losses ranged from a high of 60% for Ni to a low of 36% for Cu and Pb. Similar losses were calculated from metal concentrations measured in soil samples taken at the time the sludge was applied. In soil surface samples (0-15 cm) from maximum sludge-treated plots, percentages of total metal concentration extracted with 4.0 M HNO3 ranged from a low of 31 for Zn to a high of 75 for Cu. Efficiency of metal extraction by HNO3 was inconsistent, depending on the soil horizon and sludge treatment, so that evaluation of HNO3-extractable metals is not a reliable method of estimating total metal retention in the profiles. In soil surface samples from maximum sludge-treated plots, the percentage of total metal contents extracted with DTPA ranged from a low of 0.03 for Cr to a high of 59 for Cd. The DTPA extractable levels of Cu, Ni, and Pb were higher in the subsoils of the sludge-treated soils, indicating that these metals had been redistributed from the surface layer to deeper zones in the profile of sludge-amended soil, despite the absence of elevated total concentrations of these three metals in the deeper subsoil.  相似文献   

10.

The Kouh-e Zar mining area is located in the central part of the “Khaf–Bardaskan” volcanic-plutonic zone, NE Iran. Mining activity has resulted in pollution of soil and water resources by potentially toxic elements including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), antimony (Sb), nickel (Ni) and zinc (Zn). In this study, the major source of heavy metal pollution and elucidating the probable environmental risks associated with this area were determined by quantifying pollution in soils and water resources. Concentrations of Cd, Cr, Cu, Pb and Zn in the Kouh-e Zar mining area varied in the range of 5–470, 33–442, 25–5125, 81.15–12,096.27 and 55–4210 mg/kg, respectively. The geo-accumulation index for Cd in all samples was extremely high (Igeo > 5) and the enrichment factor also shows an extremely high amount (EF > 40), both representing evidence for highly polluted soil in the area. However, the coefficients of aqueous migration (Kx) of Cd, Cr, Cu, Pb and Zn were Kx < 0.1, so they are classified as “least mobile and inert” grade. Also, the heavy metals tend to remain in soil (solid environment). Cluster analysis (CA) determined the lithogenic origin for Zn, Cu, Cr and Cd, and the anthropogenic origin (mining activity) for Pb in the soils of the mining area. The concentrations of Cd, Cu, Pb and Zn in water are controlled by free Fe and Mn oxy-hydroxide content in the soils. Both water–rock interaction and mining activity have contributed to pollution in the area.

  相似文献   

11.
The concentrations of Cu, Zn, Fe, Mn, Ni, Cd, Pb and Co have been determined in water, bottom sediments, plankton, zoobenthos and ichthyofauna of mesotropic Lake Piaseczno located in eastern Poland. In water, sediments, plankton and benthos the most abundant heavy metals were Fe, Zn and Mn, whereas in fish Zn, Cu, and Mn were most abundant. The amount of heavy metals in the biotic components was dependent upon their concentration in water and partly upon the concentration in bottom sediments. A considerably less important role in the translocation of heavy metals is probably played by trophic interactions.  相似文献   

12.
The aim of this study was to quantify metals contained in and leached from different types of rubber granulates used in synthetic turf areas. To investigate the total content of metals, ca 0.5 g of material was added with HNO3, HF and HClO4 and microwave digested with power increasing from 250 W to 600 W. Leachates were prepared by extraction of about 5.0 g of material at room temperature for 24 h in an acidic environment (pH 5). Leaching with deionized water was also performed for comparison. Aluminium, As, Ba, Be, Cd, Co, Cr, Cu, Hg, Fe, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, Tl, V, W and Zn were quantified by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and ICP optical emission spectrometry (ICP-OES).Results indicated that the developed method was accurate and precise for the multi-element characterization of rubber granulates and leachates. The total amount and the amount leached during the acidic test varied from metal to metal and from granulate to granulate. The highest median values were found for Zn (10,229 mg/kg), Al (755 mg/kg), Mg (456 mg/kg), Fe (305 mg/kg), followed by Pb, Ba, Co, Cu and Sr. The other elements were present at few units of mg/kg. The highest leaching was observed for Zn (2300 μg/l) and Mg (2500 μg/l), followed by Fe, Sr, Al, Mn and Ba. Little As, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Rb, Sb and V leached, and Be, Hg, Se, Sn, Tl and W were below quantification limits. Data obtained were compared with the maximum tolerable amounts reported for similar materials, and only the concentration of Zn (total and leached) exceeded the expected values.  相似文献   

13.
Wood ash, a by-product generated in power plants, can be used to fertilize forest plantations to replenish nutrients lost during harvesting. Although wood ash generally contains low levels of trace metals, release of some of these may occur soon after ash application in acid soils. The risk of heavy metal contamination associated with application of mixed wood ash was assessed in six Pinus radiata D. Don plantations, on two types of mineral soil differing in texture, drainage and CECe. Four of the stands received a single application of 4500 kg ha(-1) (March 2003), and in the other two stands the same treatment was applied over three consecutive years (2003-2005). Trace metal (Cd, Cr, Cu, Mn, Ni, Pb, Zn) concentrations were monitored throughout the 3 years in different components of the forest ecosystem--soil solid fraction, soil solution, tree needles, ground vegetation and different mushroom species. Repeated applications of wood ash led to moderate increases in soil extractable Mn and Zn, and Mn in all mushrooms species. However, the maximum concentrations did not reach levels potentially harmful to organisms. Concentrations of Zn, Cu and Cd decreased in some mushroom species, probably because of increased soil pH caused by the treatment. Heavy metal concentrations in tree needles and ground vegetation were not altered. Although the risk of heavy metal contamination appears to be low, the long-term effects of wood ash application must be assessed.  相似文献   

14.
Concentrations of the heavy metals Cr, Cu, Fe and Mn were measured in sediments and porewater samples collected in three coastal ecosystems southwest of the Iberian Peninsula: the Odiel and Barbate River Salt Marshes and the Bay of Cadiz. Both the sediment and the porewater metal concentrations in the Odiel River Salt Marshes are higher than the values found in the Bay of Cadiz and Barbate River Salt Marsh, particularly for copper, a metal associated with mining activity. In porewater, the profiles were not the same as those in the solid phase and reflect the different behaviours of the elements in relation to the redox conditions. The heavy metals Cr and Cu show a typical enrichment in the porewater of the oxic zone. The heavy metals Mn and Fe show an increase in the porewater at the depths where the maximum nitrate and phosphate concentrations occur, respectively. Significant differences between background levels for each heavy metal in the various studied zones exist. Iron and Cu showed larger background levels in the Odiel River Salt Marshes than those in the Cadiz Bay and the Barbate River Salt Marshes. In the Bay of Cadiz the background levels are also high, particularly for Cr. At the Odiel River Salt Marshes the diffusive flux of Cu is high (1.3-230.1 microg cm(-2) year(-1)), which suggests that the Odiel River Salt Marshes are subject to strong contamination by Cu, which is presumably introduced to the sediment in particulate form. In the Bay of Cadiz, Cr is the only metal with positive diffusive flux (2.15 microg cm(-2) year(-1)). It is higher than those obtained in other coastal ecosystems including the Odiel River Salt Marshes. The positive diffusive flux of Cr has been associated with the input of this metal by the naval industry and the manufacturing of car and aircraft components.  相似文献   

15.
Samples of Severn Estuary (U.K.) inter-tidal sediments were fractionated into a range of particle sizes. The heavy metal concentrations in the non-residual portion (acid leach) of the sediment increased with decreasing particle size. However, the general trend was upset by a large proportion of coal particles from the adjacent S. Wales coalfield, within one specific fraction causing an enhanced heavy metal concentration. There were significant (99% confidence level) correlations between the amount of less than 20 μm material in the sediment and the concentration of Fe, Pb, Cu and Mn; lower, but still significant correlations (95% confidence level) were found for Zn, Cd, Ni and Cr. No significant correlation was found for Co. The ratio of heavy metal associated with the less than 20-μm fraction of the sediment to the metal associated with the unfractionated sediment increased for Cu, Pb, Cd and Zn in the lower part of the estuary.  相似文献   

16.
通过偏相关分析和逐步回归分析发现黄河口及其附近海域表层沉积物中可提取铜主要结合在水含氧化物和粘土矿的外表面上.而可提取锌主要结合在水合氧化铁上,其次结合在水含氧化锰上.用1mol盐酸提取沉积物中的铜、锌、铁和锰,同时测定了沉积物的外比表面积.  相似文献   

17.
The total concentrations and chemical partitioning of heavy metals in streambed sediments, collected around the Jaintia Hills coal deposit of northeast India, were studied using pollution indices and multivariate techniques to evaluate the risk and contamination levels from heavy metals and their possible origins. Results show that sediments close to mining sites have low pH (<4), high organic carbon, and contain significant amounts of Fe-oxyhydroxide phases (mainly, goethite and schwertmannite), which implies direct impact of coal mine drainage. The average concentrations of Fe, Cu, Co, Cd, Cr, and Zn exceeded the World average, and in some cases, Cd, Cu, Ni, and Cr concentrations exceeded the threshold effects level, which suggests they will be toxic to aquatic biota. Contamination factors (CF) show that the sediments are low to highly contaminated with Cd, Cu, Mn, Pb, Fe, and Zn and low to moderately contaminated with Co, Cr and Ni. The pollution load index (PLI), degree of contamination index (C deg) and Nemerow integrated pollution index (NIPI) show that the sediments are moderately to highly contaminated, with the extent of pollution greatest nearest to the collieries. The potential ecological risk index (RI) shows low to considerable ecological risk from heavy metals in the sediments, with Cd having the high potential of risk, which also agrees with the risk assessment code (RAC). Multivariate statistical analysis suggests that the concentrations of the heavy metals in stream sediments are strongly influenced by Fe-oxyhydroxide phases and organic carbon derived from anthropogenic sources, mainly coal mining activities. Although a significant proportion of the Cd, Mn, and Ni in the sediments are partitioned into exchangeable and organic fractions, a sizable amount of metals are also found in the Fe–Mn fraction, suggesting that Fe-oxyhydroxides play a dominant role in controlling metal mobility in these stream sediments.  相似文献   

18.
The concentrations of heavy metals in the leaves of two aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq., and the corresponding water and sediment samples from the Donghe River in Jishou City of Hunan Province, China were studied to investigate metal contamination from the intensive industrial activities in the surrounding area. Results showed that the concentrations of heavy metals in the sediments, especially Cd, Mn and Pb, were much higher than the eco-toxic threshold values developed by the U. S. Environmental Protection Agency. Between the two plant species, P. pectinatus showed the higher capacity in metal accumulation. The highest concentrations of Cd, Pb, Cu, Zn and Mn were found in the leaves of P. pectinatus, reaching 596, 318, 62.4, 6590 and 16,000 mg kg(-1) (DW), respectively. Significantly positive relationships were observed among the concentrations of Zn, Cu and Mn in the leaves of both aquatic plants and those in water, indicating the potential use of the two plants for pollution monitoring of these metals. In addition, a laboratory experiment was conducted to investigate the ability of P. pectinatus and P. malaianus to remove heavy metals from contaminated river water. The average removal efficiencies by P. pectinatus and P. malaianus for Cd, Pb, Mn, Zn and Cu from the spiked Donghe River water were 92%, 79%, 86%, 67% and 70%, respectively. The results indicated that P. pectinatus and P. malaianus had high capabilities to remove heavy metals directly from the contaminated water. The potential use of these plants in wastewater treatment is worth further exploration.  相似文献   

19.
Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metal-contaminated sites. This study evaluated the potential of 36plants (17species) growing on a contaminated site in North Florida. Plants and the associated soil samples were collected and analyzed for total metal concentrations. While total soil Pb, Cu, and Zn concentrations varied from 90 to 4100, 20 to 990, and 195 to 2200mg kg(-1), those in the plants ranged from 2.0 to 1183, 6.0 to 460, and 17 to 598mg kg(-1), respectively. None of the plants were suitable for phytoextraction because no hyperaccumulator was identified. However, plants with a high bioconcentration factor (BCF, metal concentration ratio of plant roots to soil) and low translocation factor (TF, metal concentration ratio of plant shoots to roots) have the potential for phytostabilization. Among the plants, Phyla nodiflora was the most efficient in accumulating Cu and Zn in its shoots (TF=12 and 6.3) while Gentiana pennelliana was most suitable for phytostabilization of sites contaminated with Pb, Cu and Zn (BCF=11, 22 and 2.6). Plant uptake of the three metals was highly correlated, whereas translocation of Pb was negatively correlated with Cu and Zn though translocation of Cu and Zn were correlated. Our study showed that native plant species growing on contaminated sites may have the potential for phytoremediation.  相似文献   

20.
Heavy metal content (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) was analysed in the edible parts of two types of horticultural crops (leaf and inflorescence crops) from 30 agricultural fields in Castellón (Spain), a representative area of the European Mediterranean region. Selected soil properties relevant to control the mobility and bioavaibility of heavy metals were analysed for the general characterisation of these agricultural soils. The levels of clay, high percentages of organic matter and the presence of carbonate seem to suggest an important retention of heavy metals by these components in most of these soils. However, the high salinity in some fields (>4 dS/m) seems to facilitate the mobility of some heavy metals (e.g. Cu). The mean values of total contents of heavy metals in soils were similar to values obtained in other works on Spanish agricultural soils. However, there were some fields with a metal content (particularly Cu, Pb or Zn) higher than these works, reflecting an important anthropogenic source. In seven fields, the crop contents of Cd and/or Pb were higher than the maximum levels established by the Commission Regulation no. 466/2001 for horticultural crops. Heavy metal contents in leaf crops were higher than in inflorescence crops, except for Zn. The differences for Cd, Cr, Cu, Fe and Mn contents between these two types of crops were statistically significant. The analysis of crop heavy metal contents showed a higher absorption and/or accumulation of heavy metals in leaf crops than in inflorescence crops. Differences in crop characteristics seem to be responsible for the differential accumulation of heavy metals. Furthermore, agronomic practices and other sources of heavy metals (e.g. atmospheric deposition for Cd and Pb) may also have some influence on crop accumulation. Given the relevance of horticultural crops in the Mediterranean diet, it is highly necessary to extend the experience of this work to other areas of the European Mediterranean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号