共查询到17条相似文献,搜索用时 78 毫秒
1.
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。 相似文献
2.
为提高网络入侵检测效果,提出一种结合混沌粒子群优化(CPSO)算法和最小二乘支持向量机(LSSVM)的网络入侵检测模型。将网络特征和LSSVM参数编码成二进制粒子,根据网络入侵检测正确率和特征子集维数权值构造粒子群目标函数。通过粒子群找到最优特征子集和LSSVM参数,同时引入混沌机制保证粒子群的多样性,防止早熟现象的出现,从而建立最优网络入侵检测模型。采用KDD99数据集进行性能测试,结果表明,该模型不仅能获得最优特征子集和LSSVM参数,而且提高了入侵检测速度和正确率,降低了入侵检测误报率和漏报率。 相似文献
3.
本文提出了一种基于特征选择的超球面支持向量机方法,并将其应用于入侵检测中,有效地去除冗余属性。该方法通过特征选择方法找出最优特征手集,交由超球面支持向量机进行训练,最终生成分类模型。 相似文献
4.
基于PSO的LS-SVM特征选择与参数优化算法 总被引:1,自引:0,他引:1
针对最小二乘支持向量机特征选择及参数优化问题,提出了一种基于PSO的LS-SVM特征选择与参数同步优化算法。首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。在UCI标准数据集上进行的仿真实验表明,该算法可有效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。 相似文献
5.
基于特征选择的网络入侵检测模型 总被引:5,自引:0,他引:5
研究网络安全问题,网络入侵手段多样,特征多,存在大量不利的冗余特征,传统网络入侵检测不考虑特征冗余,检测效率和正确论低。为更一步提高了网络安全,提出一种特征选择的网络入侵检测模模型。采用粒子群算法对网络系统状态特征和支持向量机参数进行同步选择,找到最优网络入侵检测模型特征和模型参数,降低了模型的输入样本维数。仿真结果表明,改进算法可降低特征维数,消除了不利于提高检测结果的冗余特征,并提高了网络入侵检测正确率,适合于小样本、实时要求高的网络入侵检测。 相似文献
6.
基于BPSO-SVM的网络入侵特征选择和检测 总被引:6,自引:1,他引:6
采用改进的二进制粒子群优化进行入侵特征子集选择,粒予群中每个粒子代表。个选择的特征子集,结合支持向世机使用该特征子集所对应的数据集进行分类,正确分类结果作为该粒子的适应度,通过粒子群优化实现最优入侵特征选择。改进的BPSO方沾中通过引入粒于群依概率整体变异来避免陷入局部最优,同时采用粒子禁忌搜索列表来扩大粒子搜索范围和避免重复计算;SVM中采用基于粒度的网格搜索来获得最优核参数。最后用KDD99标准数据集进行实验研究,结果表明该方法能获得满意的检测效果。 相似文献
7.
基于粒子群LSSVM的网络入侵检测 总被引:4,自引:1,他引:4
研究保护网络安全问题,计算机网络攻击的多样性及隐蔽性导致网络入侵检测困难.当前流行的人工神经网络检测方法的网络入侵检测率仅70%左右,不能满足网络安全防护需求,为了解决上述问题,提出基于最小二乘支持向量机和粒子群优化算法(PSO-LSSVM)的网络入侵检测方法,粒子群优化算法用于选择合适的最小二乘支持向量机参数.方法泛化能力强,识别精度高.在网络入侵检测中,通过KDDCup99数据库数据进行仿真,证明方法的优越性.实验结果表明粒子群优化算法与最小二乘支持向量机组合方法的网络入侵检测精度优于LSSVM与SVM.可见,PSO-LSSVM非常适合于网络入侵检测,可为网络保护设计提供参考. 相似文献
8.
特征选择是模式识别系统的难点.针对高维数据对象,先运用改进粒子群优化(PSO)算法快速、有效地从特征样本中提取一组最优特征子集,然后采用最小二乘支持向量机(LSSVM)分类器对最优特征子集进行分类,验证特征选择的好坏.经大量实验验证,在保证分类正确率的前提下,该方法有效提高了特征选择效率. 相似文献
9.
基于聚类的LS-SVM的入侵检测方法研究 总被引:1,自引:0,他引:1
本文针对最小二乘法支持向量机在入侵检测中的训练效率低下的缺点,将聚类方法应用其中。该方法主要用来对数据集进行剪枝,有效地减少距离分类面较远的数据集合数量,而使用靠近聚类中心的数据集合作为有效的样本集合,减少样本的训练时间,提高训练效率。实验表明,使用聚类方法提高了最小二乘法支持向量机的训练效率,而且对入侵检测有很好的效果。 相似文献
10.
KNN-IPSO选择特征的网络入侵检测 总被引:1,自引:0,他引:1
为了提高网络入侵检测的正确率,提出一种基于KNN-IPSO选择特征的网络入侵检测模型(KNN-IPSO)。首先采用K近邻算法消除原始网络数据中的冗余特征,并将其作为粒子群算法的初始解,然后采用粒子群算法找到最优特征子集,并对粒子的惯性权重进行自适应调整和种群进行混沌操作,帮助种群跳出局部最优,最后采用KDD CUP 99数据集对KNN-IPSO的性能进行测试。结果表明,KNN-IPSO消除了冗余特征,降低了分类器的输入维数,有效提高了入侵检测正确率和检测速度。 相似文献
11.
刘明珍 《计算机工程与应用》2012,48(35):71-74,105
为了提高网络入侵的检测正确率,针对网络入侵检测中特征选择问题,将二值粒子群优化算法(BPSO)用于网络入侵特征选择,结合支持向量机(SVM)提出了一种基于BPSO-SVM的网络入侵检测算法。该算法将网络入侵检测转化为多分类问题,采用wrapper特征选择模型,以SVM为分类器,通过样本训练分类器,根据分类结果,利用BPSO算法在特征空间中进行全局搜索,选择最优特征集进行分类。实验结果表明,BPSO-SVM有效降低了特征维数,显著提高了网络入侵的检测正确率,还大大缩短了检测时间。 相似文献
12.
基于离散粒子群和支持向量机的特征基因选择算法 总被引:1,自引:0,他引:1
基因芯片表达谱信息,为识别疾病相关基因及对癌症等疾病分型、诊断及病理学研究提供一新途径。在基因表达谱数据中选择特征基因可以提高疾病诊断、分类的准确率,并降低分类器的复杂度。本文研究了基于离散粒子群(binary particle swarm optimization,BPSO)和支持向量机(support vector machine,SVM)封装模式的BPSO-SVM特征基因选择方法,首先随机产生若干种群(特征子集),然后用BPSO算法优化随机产生的特征基因,并用SVM分类结果指导搜索,最后选出最佳适应度的特征基因子集以训练SVM。结果表明,基于BPSO-SVM的特征基因选择方法,的确是一种行之有效的特征基因选择方法。 相似文献
13.
为了提高网络流量的预测精度,考虑到网络流量的长相关、非线性等特性,提出一种粒子群算法优化最小二乘支持向量机参数的网络流量预测模型(PSO-LSSVM).首先将最小二乘支持向量机参数作为粒子的位置向量,然后利用粒子群算法找到模型的最优参数,最后采用最优参数最小二乘支持向量机建立网络流量预测模型.仿真结果表明,相对于参比模型,PSO-LSSVM能够获得更高的网络流量预测精度,更能准确描述网络流量变化规律. 相似文献
14.
对于非线性系统预测控制问题, 本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值, 通过输出反馈和偏差校正减少预测误差, 由PSO滚动优化获得非线性系统的控制量. 该方法能在非线性系统数学模型未知的情况下设计出有效的预测控制器. 通过对单变量多变量非线性系统进行仿真, 证明了该预测控制方法是有效的, 且具有良好的自适应能力和鲁棒性. 相似文献
15.
基于最小二乘支持向量机的机器视觉识别方法 总被引:1,自引:0,他引:1
为了解决传统的机器视觉识别技术识别精度低的难题,提出基于粒子群优化最小二乘支持向量机的机器视觉识别方法.首先,对机器视觉采集的图像进行特征提取;然后,利用特征数据建立基于粒子群优化最小二乘支持向量机的识别模型;最后,以红枣缺陷识别作为应用案例以证明该方法的有效性及优越性.分别采用人工神经网络、支持向量机与该方法进行对比... 相似文献
16.
损伤检测方法是关联智能结构实现损伤自诊断功能的一个重要研究内容。针对支持向量机研究的关键与难点——核函数的构造及核参数的优化问题,基于小波核函数的近似正交性,研究基于小波核的最小二乘支持向量机(LSWSVM)方法,并采用粒子群优化算法(PSO)对LSWSVM参数进行优化,从而构造PSO-LSWSVM方法。基于压电元件的正逆压电效应,搭建损伤自诊断压电智能结构试验系统,对各压电传感器的响应信号进行功率谱密度最大值(PSM)特征提取。基于各压电传感器的响应信号特征,将该PSO-LSWSVM方法应用于智能结构损伤自诊断,并对该方法进行性能评价。结果表明,在同等条件下,LSWSVM有比基于高斯核函数的最小二乘支持向量机(LSSVM)更高的损伤检测精度及更强的推广能力,相比于传统遗传算法(TGA),该方法中粒子群优化算法(PSO)具有较好的寻优能力和收敛速度。 相似文献