首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 68 毫秒
1.
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。  相似文献   

2.
刘明珍 《计算机工程》2013,(11):131-135
为提高网络入侵检测效果,提出一种结合混沌粒子群优化(CPSO)算法和最小二乘支持向量机(LSSVM)的网络入侵检测模型。将网络特征和LSSVM参数编码成二进制粒子,根据网络入侵检测正确率和特征子集维数权值构造粒子群目标函数。通过粒子群找到最优特征子集和LSSVM参数,同时引入混沌机制保证粒子群的多样性,防止早熟现象的出现,从而建立最优网络入侵检测模型。采用KDD99数据集进行性能测试,结果表明,该模型不仅能获得最优特征子集和LSSVM参数,而且提高了入侵检测速度和正确率,降低了入侵检测误报率和漏报率。  相似文献   

3.
刘永芬 《福建电脑》2012,28(4):89-91
本文提出了一种基于特征选择的超球面支持向量机方法,并将其应用于入侵检测中,有效地去除冗余属性。该方法通过特征选择方法找出最优特征子集,交由超球面支持向量机进行训练,最终生成分类模型。  相似文献   

4.
基于PSO的LS-SVM特征选择与参数优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对最小二乘支持向量机特征选择及参数优化问题,提出了一种基于PSO的LS-SVM特征选择与参数同步优化算法。首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。在UCI标准数据集上进行的仿真实验表明,该算法可有效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。  相似文献   

5.
基于特征选择的网络入侵检测模型   总被引:5,自引:0,他引:5  
研究网络安全问题,网络入侵手段多样,特征多,存在大量不利的冗余特征,传统网络入侵检测不考虑特征冗余,检测效率和正确论低。为更一步提高了网络安全,提出一种特征选择的网络入侵检测模模型。采用粒子群算法对网络系统状态特征和支持向量机参数进行同步选择,找到最优网络入侵检测模型特征和模型参数,降低了模型的输入样本维数。仿真结果表明,改进算法可降低特征维数,消除了不利于提高检测结果的冗余特征,并提高了网络入侵检测正确率,适合于小样本、实时要求高的网络入侵检测。  相似文献   

6.
基于BPSO-SVM的网络入侵特征选择和检测   总被引:6,自引:1,他引:6  
采用改进的二进制粒子群优化进行入侵特征子集选择,粒予群中每个粒子代表。个选择的特征子集,结合支持向世机使用该特征子集所对应的数据集进行分类,正确分类结果作为该粒子的适应度,通过粒子群优化实现最优入侵特征选择。改进的BPSO方沾中通过引入粒于群依概率整体变异来避免陷入局部最优,同时采用粒子禁忌搜索列表来扩大粒子搜索范围和避免重复计算;SVM中采用基于粒度的网格搜索来获得最优核参数。最后用KDD99标准数据集进行实验研究,结果表明该方法能获得满意的检测效果。  相似文献   

7.
基于粒子群LSSVM的网络入侵检测   总被引:4,自引:1,他引:4  
研究保护网络安全问题,计算机网络攻击的多样性及隐蔽性导致网络入侵检测困难.当前流行的人工神经网络检测方法的网络入侵检测率仅70%左右,不能满足网络安全防护需求,为了解决上述问题,提出基于最小二乘支持向量机和粒子群优化算法(PSO-LSSVM)的网络入侵检测方法,粒子群优化算法用于选择合适的最小二乘支持向量机参数.方法泛化能力强,识别精度高.在网络入侵检测中,通过KDDCup99数据库数据进行仿真,证明方法的优越性.实验结果表明粒子群优化算法与最小二乘支持向量机组合方法的网络入侵检测精度优于LSSVM与SVM.可见,PSO-LSSVM非常适合于网络入侵检测,可为网络保护设计提供参考.  相似文献   

8.
特征选择是模式识别系统的难点.针对高维数据对象,先运用改进粒子群优化(PSO)算法快速、有效地从特征样本中提取一组最优特征子集,然后采用最小二乘支持向量机(LSSVM)分类器对最优特征子集进行分类,验证特征选择的好坏.经大量实验验证,在保证分类正确率的前提下,该方法有效提高了特征选择效率.  相似文献   

9.
基于聚类的LS-SVM的入侵检测方法研究   总被引:1,自引:0,他引:1  
本文针对最小二乘法支持向量机在入侵检测中的训练效率低下的缺点,将聚类方法应用其中。该方法主要用来对数据集进行剪枝,有效地减少距离分类面较远的数据集合数量,而使用靠近聚类中心的数据集合作为有效的样本集合,减少样本的训练时间,提高训练效率。实验表明,使用聚类方法提高了最小二乘法支持向量机的训练效率,而且对入侵检测有很好的效果。  相似文献   

10.
入侵检测中的快速特征选择方法   总被引:2,自引:3,他引:2       下载免费PDF全文
进行入侵检测前必须分析输入数据的特征。使用粒子群优化算法对特征进行选择,消除冗余属性、降低问题规模、提高数据分类质量、加快数据处理速度。用二进制字符串序列表示粒子位置,阐述位置和速度的更新策略以及适应度函数的选择。在KDD CUP1999数据集上进行实验,结果表明与遗传进化算法相比,该方法可以更有效地精简特征,提高分类质量。  相似文献   

11.
基于特征选择的网络入侵检测方法   总被引:1,自引:0,他引:1  
针对现有入侵检测算法中存在着冗余或噪音特征导致的检测模型精度下降与训练时间过长的问题进行了研究,将特征选择算法引入到入侵检测领域,提出了一种基于特征选择的入侵检测方法.利用不同的离散化与特征选择算法生成具有差异的多个最优特征子集,并对每个特征子集进行归一化处理,用分类算法对提取后的特征进行学习建模.通过实验将该方法与基于传统算法(决策树、朴素贝叶斯、支持向量机)的入侵检测方法作比较,实验结果表明,该方法有效地提高了检测攻击的准确率,并且降低了模型的训练时间.  相似文献   

12.
为了提高网络入侵检测的准确性与检测效率,弥补由单一优化算法带来的计算精度低、易陷入局部极值等不足,将差分算法的思想引入量子粒子群算法中,提出了一种改进量子粒子群算法(Improved Quantum Particle Swarm Optimization algorithm,IQPSO)和改进差分算法(Improved Difference Evolution,IDE)相融合的IQPSO-IDE算法,并将IQPSO-IDE算法对支持向量机(Support Vector Machine,SVM)的参数进行优化。以此为基础,设计了一种基于IQPSO-IDE算法的网络入侵检测方法。实验结果表明,IQPSO-IDE算法与传统的QPSO、GA-DE、QPSO-DE算法相比,不仅在效率上有了明显的改善,而且在网络入侵检测的正确率上分别提高了5.12%、3.05%、2.26%,在误报率上分别降低了3.31%、1.54%、0.93%,在漏报率上分别降低了1.26%、0.73%、0.52%。  相似文献   

13.
为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极限学习机建立网络入侵检测分类器,并采用KDD CUP 99数据集进行仿真测试。结果表明,GAPSO不仅提高了入侵检测速度,而且可以提高网络入侵检测的正确率。  相似文献   

14.
基于特征选择的轻量级入侵检测系统   总被引:22,自引:1,他引:22  
陈友  程学旗  李洋  戴磊 《软件学报》2007,18(7):1639-1651
基于特征选择的入侵检测系统处理的数据含有大量的冗余与噪音特征,使得系统耗用的计算资源很大,导致系统训练时间长、实时性差,检测效果不好.特征选择算法能够很好地消除冗余和噪音特征,为了提高入侵检测系统的检测速度和效果,对基于特征选择的入侵检测系统进行研究是必要的.综述了这一领域的研究进展,从过滤器、封装器、混合器3种模式对基于特征选择的轻量级入侵检测系统进行分类比较,分析和总结各种系统的优缺点以及它们各自适用的条件,最后指出入侵检测领域特征选择的发展趋势.特征选择不仅可以提升入侵检测系统的性能,而且使得对入侵检测的研究向特征提取算法的方向转移.  相似文献   

15.
一种高效的面向轻量级入侵检测系统的特征选择算法   总被引:9,自引:0,他引:9  
陈友  沈华伟  李洋  程学旗 《计算机学报》2007,30(8):1398-1408
特征选择是网络安全、模式识别、数据挖掘等领域的重要问题之一.针对高维数据对象,特征选择一方面可以提高分类精度和效率,另一方面可以找出富含信息的特征子集.文中提出一种wrapper型的特征选择算法来构建轻量级入侵检测系统.该算法采用遗传算法和禁忌搜索相混合的搜索策略对特征子集空间进行随机搜索,然后利用提供的数据在无约束优化线性支持向量机上的平均分类正确率作为特征子集的评价标准来获取最优特征子集.文中按照DOS,PROBE,R2L,U2R 4个类别对KDD1999数据集进行分类,并且在每一类上进行了大量的实验.实验结果表明,对每一类攻击文中提出的特征选择算法不仅可以加快特征选择的速度,而且基于该算法构建的入侵检测系统在建模时间、检测时间、检测已知攻击、检测未知攻击上,与没有运用特征选择的入侵检测系统相比具有更好的性能.  相似文献   

16.
为提升入侵检测系统的整体性能,文中提出一种新的算法。首先使用孤立点滤除算法进行数据前期处理,通过特征选取算法筛选出各分类器中最佳的特征空间,以增强各分类算法的训练模型。再进一步运用十倍交叉验证法对分类模型实施性能评估,把具有最佳捕捉率的分类模型作为预测测试样本类别时的加权分类模型,最后得出整体推论结果。仿真实验表明该算法整体分类准确率提高到96%,成本值减低为0.198 3,能够成功地改善网络异常入侵检测的分类性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号