首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
研究模糊自适应PID控制算法对无轴传动控制系统的影响,并对控制电机转速同步精度应用不同PID算法进行比较。采用主从电机同步控制策略,并利用Matlab开发了完整的以永磁伺服电机为执行机构的仿真系统。调节控制环参数,得出控制系统的仿真曲线。通过对仿真曲线的分析,比较传统PID和模糊自适应PID算法对转速同步精度的影响,最后指出模糊自适应PID控制算法的控制效果及优越性。  相似文献   

2.
为了进一步提高门座式起重机控制系统的平稳性和可靠性,在研究传统的起重机控制系统的基础上,设计了基于PLC模糊自适应PID的起重机变频调速系统,利用先进的模糊自适应PID算法与PLC控制技术相结合实现智能变频控制。系统直接由PLC实现函数运算取代常规的查表方式,改善调速性能,实现了变频调速系统的快速控制;同时,通过PLC对起重机变频器进行无触点控制,有效提高了的准确可靠性。仿真结果表明:加入模糊自适应PID控制的起重机变频调速系统比传统系统响应速度快,超调量低于3%,更加平稳可靠;同时降低了起重机功耗,节能近20%,并有效延长了电动机的使用寿命。  相似文献   

3.
以智能小车的电机控制系统为模型,采用自适应模糊PID控制策略进行控制设计,它克服了简单模糊控制和传统PID控制的一些缺点;利用MATLAB7.0软件中的工具箱进行系统的辅助设计与仿真。仿真结果表明,该系统的动态性能、稳态性能及抗扰性能都趋于良好。  相似文献   

4.
针对传统的PID控制方式在对无刷直流电机系统控制时,存在精度低、抗干扰能力弱等不足,提出一种基于参数自适应模糊PID集成控制策略。首先,分析了无刷直流电机的数学模型,建立了基于双闭环调速系统的无刷直流电机控制系统模型,并对无刷直流电机双闭环系统转速进行模糊PID控制;然后,详细分析了建立该模糊自适应PID控制器的设计方法,提出一种优化模糊算子的优化方法,并运用仿真软件Matlab/Simulink实现了系统的设计和仿真;最后,在相同环境下,对比传统PID控制和模糊自适应PID集成控制两种控制策略的仿真结果。仿真结果表明,模糊自适应PID集成控制算法能使无刷直流电机双闭环控制系统具有更好的动、静态性能及较强的自适应能力。  相似文献   

5.
螺旋桨的负载特性不仅与飞行器的飞行高度相关,还与其驱动电机的转速呈现非线性关系,若驱动电机采用传统的PID控制方法,较难取得理想的控制效果.为了解决这一问题,在分析了驱动电机的数学模型和螺旋桨负载特性的基础上,设计了一种模糊自适应PID控制方法.并在Matlab/Simulink中建立了控制系统的仿真模型,进行了仿真实验.实验结果表明,模糊自适应PID控制方法动静态品质良好、鲁棒性强,控制效果明显优于传统的PID控制器.  相似文献   

6.
分析了无刷直流电动机的数学模型,提出了一种新型的P-模糊自适应PID控制方法,并在Matlab/Simulink环境中建立了基于P-模糊自适应PID控制的无刷直流电动机调速系统仿真模型。在该调速系统中,电流控制采用电流滞环,转速控制采用P控制和模糊自适应PID控制相结合的方式,实现了电流滞环和转速模糊控制的双闭环调速控制功能。仿真结果表明,该系统与基于常规PID控制的调速系统相比,系统响应时间缩短一半,且超调减小,具有较强的鲁棒性和自适应能力。  相似文献   

7.
一种实时自适应步进电机PID控制器设计   总被引:2,自引:0,他引:2  
传统PID控制器通常难以满足多变量、非线性、强耦合的步进电机动态响应和精确调速要求,结合传统PID控制和模糊控制及遗传算法(GA)整定PID参数的优点,设计基于模糊遗传算法的实时自适应步进电动机PID控制器,充分发挥传统和智能控制策略各自的优势.仿真结果表明,该实时自适应步进电动机PID控制器,具有很好的自适应能力和抗负载扰动能力.在稳定性、动态速度响应诸方面均优于传统的PID控制器和模糊控制器,系统达到了较高调速性能和控制精度.  相似文献   

8.
异步电机软启动系统是一个时变、非线性的高阶系统,将变论域模糊自适应控制方法应用于异步电机的软启动控制系统中,并建立电机软启动控制系统的Matlab/Simulink的仿真模型,给出了变论域自适应模糊控制方法的仿真结果,与传统PID控制和常规模糊软启动控制方法进行了比较。仿真结果表明,该方法具有无需精确建模、响应快速、精度高、鲁棒性好、适应性强等优点,切实可行,并优于其他控制方法。  相似文献   

9.
直流电机具有调速范围广、调速性能平稳光滑、启动转矩较大、易于起停车等优点,特别适合用在调速要求比较高的场合。传统 PID 直流调速控制在工况变化情况下需要调整参数,过程复杂且难以自适应,针对这个问题,设计了一个模糊PID直流调速控制系统,首先分析了直流电机工作特性,构建了PID参数调节的模糊规则表,进行了理论分析和仿真;在此基础上,设计实现了一模糊 PID 直流调速控制系统,实现了对直流电机转速的自适应控制与显示。系统包含上位机程序和下位控制器两部分,其中上位机程序采用Visual Basic编写,用于设置PID参数、通信端口、转速显示等;下位控制器采用ARM S3C2440作为核心控制单元,包括IGBT驱动部分、H桥可逆电路、通信电路、电源电路、转速反馈电路等。仿真和实际实验显示该系统不仅提高了自适应性,而且大大提高了调速快速性和准确性。此外,该系统结构模块化,易于推广,可用于实际调速场合和教育培训实验台,具有一定理论价值和实际意义。  相似文献   

10.
基于旋转法的液体粘度测量需要不同等级稳定的电机旋转速度。采用电流转速双闭环来实现对直流电机调速系统的控制。电流内环使用PI控制,转速外环采用大增益比例控制结合PID控制,PID参数使用模糊逻辑进行自整定,这种控制方式可根据输入偏差大小选择不同控制策略实现转速的自适应快速调节与准确跟踪。在Matlab/Simulink平台上搭建基于这种控制器的仿真模型,对直流电机调速系统进行仿真。仿真结果表明这种系统具有良好的控制性能,这种自适应控制器具有良好的动态响应特性,可以消除稳态误差。  相似文献   

11.
永磁同步电机模糊PID控制建模与仿真   总被引:1,自引:0,他引:1  
永磁同步电机(PMSM)作为一种非线性、强耦合、参数时变的被控对象,传统PID对其控制效果欠佳。为此在PID的基础上,结合模糊控制的优点,设计了一种PMSM的模糊自适应PID控制策略,并对系统建模仿真。结果表明,与PID控制相比,该模糊PID控制方案具有自适应强、超调量小等特点。  相似文献   

12.
针对异步电动机直接起动电流较大的问题及传统比例-积分-微分( PID)控制和模糊控制在异步电动机软起动控制中的比较,提出了1种基于模糊PID复合控制的异步电动机软起动器的设计方法.根据对电动机起动特性的分析,在异步电动机起动的不同阶段分别采用模糊控制和PID控制,以达到最佳的起动效果.仿真结果表明,这种复合控制方法解决...  相似文献   

13.
为了提高三相异步电机矢量控制的性能,在传统的转速PID控制器的基础上,建立模糊PID控制器,利用Matlab/Simulink搭建基于三相异步电动机转速控制的模糊PID系统,分别使用常规PID控制器与模糊PID控制器进行控制,并进行比较。仿真结果表明模糊控制能使系统取得较好的控制性能并具有较强的鲁棒性。  相似文献   

14.
阐述直流无刷电机工作原理,分析直流无刷电机的数学模型;介绍模糊控制理论与神经网络控制理论,提出模糊自适应PID控制策略;在MATLAB环境下,分别使用反电动势建模法建立直流无刷电机控制系统的模型,并对各个模型进行仿真分析。然后利用BP神经网络控制策略,模糊自适应PID控制策略改进速度控制器中的常规PID算法,进行仿真,并将所得结果进行对比。从对比结果可以得出模糊自适应PID控制策略更适合直流无刷电机的控制。  相似文献   

15.
考虑到传统的阀控液压系统存在伺服阀容易因受到油液污染而无法正常工作、阀控液压系统效率低、节流损失大、造成能源浪费等问题,研究一种基于伺服电机直驱液压泵的超前支架电液控制方法.伺服电机直驱液压泵系统由于电机的启动和转向过程中存在滞后性,因此使用常规PID算法的控制效果较差,使用模糊PID算法对伺服电机直驱液压泵系统进行控制.使用Matlab/Simulink仿真软件建立本文研究的直驱泵控巷道超前支架控制系统的仿真模型,并建立超前支架的实验样机,使用常规PID与模糊PID算法进行对比研究,研究结果表明:模糊PID算法作用下,伺服电机直驱液压泵的超前支架液压缸位置变化的超调量更低,调整速度更快,能够快速跟踪给定信号曲线,具有较好的鲁棒性.  相似文献   

16.
针对小机车传统试验电源系统存在的电压稳定性能差、响应速度慢的问题,提出了一种自适应模糊PID控制的小机车新型试验电源系统。对自适应模糊PID控制器的设计和建模,以及仿真的效果进行了详细的阐述,并进行了系统的鲁棒性分析。同时还将自适应模糊PID控制和传统PID控制进行了对比研究,证明了自适应模糊PID控制的小机车试验电源系统有电压稳定性能好、响应速度快的良好电气特性。  相似文献   

17.
针对剪板机伺服控制系统的实际需求,在分析了剪板机常用伺服控制方法的基础上,设计了模糊自适应PID控制器.采用模糊控制和PID相结合,克服了传统PID控制的一些缺点.通过对控制系统建模、仿真,其结果表明,和模糊控制、传统PID相比较,该控制器在超调量、调节时间、抗干扰、鲁棒稳定性等方面有更好的品质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号