首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
An improved topical gel was developed which could allow fast release of drug and having appropriate organoleptic (texture) and rheological properties (viscosity). In vitro release of diclofenac potassium from hydrophobically modified hydroxypropyl methyl cellulose (hm-HPMC, 90L grade) based gels (F1, F2 and F3 at 1, 1.5 and 2 % (w/v) concentration, respectively) was compared with conventional hydrophilic hydroxypropyl methylcellulose (HPMC, 50 mPa s) based gels (F4 and F5 at 12 and 15 % (w/v) concentration, respectively). This study was performed in Franz diffusion cell using cellulose dialysis membrane. The hm-HPMC-based gels of higher viscosity release remarkable quantity of the drug in comparison to conventional hydrophilic HPMC-based gels of lower viscosity. So in the drug-release process polymer concentration is more important and a determinant factor compared to viscosity. Texture profile and viscosity of hm-HPMC-based gels were compared with a commercial gel and all the rheological data obtained from the experiments confirm the suitability of these hm-HPMC-based gels for use as a topical drug delivery system. In order to achieve percutaneous penetration of drug, permeation enhancers (n-octanol and propylene glycol) were added in hm-HPMC-based gels. Both enhancers have shown enhancement of drug penetration through rat skin. Propylene glycol at both lower concentration (2 %) and higher concentration (5 %) exhibited a greater increase in the permeation flux as well as more antinociceptive activity than formulations without enhancer or with n-octanol as enhancer.  相似文献   

2.
The efficient delivery of daunorubicin loaded poly (lactic acid) (PLA)/multiwalled carbon nanotubes (MWCNT)/Fe3O4 composite nanofibers was investigated. The synthesized nanofibers were characterized using SEM, TEM, and XRD analysis. The proliferation inhibition effect of PLA/MWCNT/Fe3O4 nanofibrous scaffolds on leukemia K562 cell lines was investigated. The effect of nanofiber concentration on the daunorubicin delivery in the absence and presence of external magnetic field was also evaluated. The results indicated that the incorporation of daunorubicin into the prepared nanofibrous scaffold under applied magnetic field could have synergistic cytotoxic effect on leukemia cancer cells. The drug release mechanism followed the non-Fickian transport.  相似文献   

3.
La0.67Ca0.33MnO3/BaTiO3 composite films have been grown on Nb-doped SrTiO3 substrates by the sol–gel method. The magnetic and ferroelectric properties in the composite films are investigated. A three-state memory is formed by applying a vertical electric field across the La0.67Ca0.33MnO3/BaTiO3 heterostructure, this behavior is attributed to the polarization-mediated resistive switching effect. In addition, the transport properties of La0.67Ca0.33MnO3 thin film can be modulated by an external magnetic field, a 10.3 K shift of the metal insulator transition temperature is obtained with the change of applied magnetic field from 0 T to 6 T. Consequently, in La0.67Ca0.33MnO3/BaTiO3 heterostructure, the resistance behavior can be modulated by piezoelectric effect, ferroelectric polarization and magnetic field simultaneously.  相似文献   

4.
Metal layer was deposited by the reduction of NiCl2 and CoCl2 in polyacrylonitrile film after applying an external magnetic field in directions parallel and perpendicular to the surface of the film; the magnetic properties of the metal-deposited film were investigated. When the parallel magnetic field was applied, the values of coercivity (Hc), remanent flux density (Br) and maximum flux density (Bs) increased regardless of the composition of the metal ions, compared with the case without the application of the magnetic field. From the scanning electron micrographs and X-ray diffraction analyses, it was shown that the growth of crystalline orientation in the deposited metals was enhanced by applying a parallel magnetic field.  相似文献   

5.
The article is concerned with the preparation of polymer–iron oxide nanocomposites and the study as drug‐delivery matrices under the influence of applied magnetic field. Biocompatible materials were prepared by incorporating an aqueous ferrofluid in poly(vinyl alcohol) and scleroglucan (SCL) hydrogels, loaded with theophylline as model drug for release studies. The in vitro release profile was obtained using a flat Franz cell and the kinetic parameters were derived applying a semiempirical power law. A magnetic characterization of nanoparticles contained in the ferrofluid was performed by obtaining the magnetization curve. For both systems, the observed drug release profiles decreased when a uniform external magnetic field is applied suggesting they can be used as environmental responsive matrices for biomedical applications. Dynamic rheological measurements show that a higher storage modulus and a more compact structure are obtained by incorporating the ferrofluid into the hydrogels. These rheological results and environmental electron scanning microscopy micrographs point to an understanding of release behavior once the magnetic field is applied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Magnetic‐field‐sensitive gel, called ferrogel, was prepared by a two‐step procedure in which first step requires synthesis of the poly(Ntert‐butylacrylamide‐co‐acrylamide) [P(NTBA‐co‐AAm)] hydrogel and during second step magnetite (Fe3O4) particles were formed in the hydrogel via coprecipitation of Fe(II) and Fe(III) ions in alkaline medium at 70°C. The obtained ferrogel was characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy combined with energy dispersive spectroscopy, and electron spin resonance measurements. The magnetic responsive of the ferrogel was also investigated by applying magnetic field to the ferrogel. The extent of a bending degree of the ferrogel depends on the applied magnetic field strength. In addition, the magnetic responsive studies also indicated that formed magnetite content in the hydrogel is high enough to achieve considerable magnetic response to external magnetic field. As a result, the P(NTBA‐co‐AAm) ferrogel may be useful for potential applications in magnetically controlled drug release systems, magnetic‐sensitive sensors, and pseudomuscular actuators. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A new kind of magnetic rubber was prepared by doping Fe3O4 nanoparticles into nature rubber matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. They showed that the Fe3O4 nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical and magnetic properties of the magnetic rubber were investigated, indicating the improvement of tensile strength from 13.9 to 15.8 MPa and high saturation magnetization (16.7 emu/g) compared with the nature rubber. What’ more, the loss factor of magnetic rubber treated by an external homogenous magnetic field (1.5 T) was improved from 0.07 to 0.15 compared with magnetic rubber without treating by the magnetic field. The result is attributed that after applying a magnetic field, magnetic nanoparticles on the rubber matrix are magnetized; meanwhile, magnetic dipole moments are induced, which causes magnetic field and can absorb shock energy.  相似文献   

8.
This paper reports the synthesis of pH-sensitive gel beads derived from alginate (SA) and carboxymethyl chitosan (CMCS) for drug delivery. The composite SA/CMCS gel beads were prepared by dual ionic gelation: one ionic gelation between SA and Ca2+ and another one between CMCS and β-Sodium glycerophosphate (β-GP). The structure properties of hydrogel beads were characterized by SEM, IR and TG technique. The influence of the polymer composition and cross-linkers on the gel swelling property was investigated. When the concentration of CMCS and SA were 3 % and the volume ratio was 1:2, the swelling rate of gel beads crosslinked by β-GP and CaCl2 solution can increase up to 31.2 and the swelling time can reach 10.5 h. In the drug release study, bovine serum albumin (BSA) was chosen as model drugs. The results indicated that BSA released slowly from the gel beads at pH 1.2 and the release ratio was about 10 %. At pH 7.4, the amounts of BSA released increased significantly as compared to those released at pH 1.2 and the total release time was extended to 11 h. The composite gel system demonstrates sustained release profile and pH sensitivity, which can be considered as good candidates for oral drug delivery systems.  相似文献   

9.
Hydrogels, composed of poly(acrylamide‐co‐maleic acid) were synthesized and the release of vitamin B2 from these gels was studied as a function of the pH of the external media, the initial amount of the drug loaded, and the crosslinking ratio in the polymer matrix. The gels containing 3.8 mg of the drug per gram gel exhibit almost zero‐order release behavior in the external media of pH 7.4 over the time interval of more than their half‐life period (t1/2). The amount of the drug loaded into the hydrogel also affected the dynamic release of the encapsulated drug. As expected, the gels showed a complete swelling‐dependent mechanism, which was further supported by the similar morphology of the swelling and release profiles of the drug‐loaded sample. The hydrophilic nature of the drug riboflavin does not contribute toward the zero‐order release dynamics of the hydrogel system. On the other hand, the swelling osmotic pressure developed between the gels and the external phase, due to loading of the drug by equilibration of the gels in the alkaline drug solution, plays an effective role in governing the swelling and release profiles. Finally, the minimum release of the drug in the swelling media of pH 2.0 and the maximum release with zero‐order kinetics in the medium of pH 7.4 suggest that the proposed drug‐delivery devices have a significant potential to be used as an oral drug‐delivery system for colon‐specific delivery along the gastrointestinal (GI) tract. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1133–1145, 2002; DOI 10.1002/app.10402  相似文献   

10.
This work investigates the mechanical properties, microstructures, and water-swelling behavior of a novel hydrogel filled with magnetic particles. The nanoparticles of magnetite (Fe3O4) and the micro-particles of carbonyl iron (CI) were selected and filled into a polyacrylamide (PAAM) hydrogel matrix to create two types of magnetic hydrogels. The isotropy and anisotropy of magnetic hydrogels are also presented in this study. The isotropic samples were cured without applying a magnetic field (MF), and the anisotropic samples were cured by applying an MF in the direction perpendicular to the thickness of the samples. The effects of the size, content, and inner structures of magnetic particles on the magneto-responsive and swelling properties of magnetic hydrogels were investigated. It was found that the magnetorheological (MR) effect of anisotropic samples was apparently higher than that of isotropic samples, and the hydrogels with CI exhibited a noticeable MR effect than those with Fe3O4. The storage modulus can be enhanced by increasing the filler content and size, forming an anisotropic structure, and applying an external MF. In addition, the magnetic hydrogels also have a swelling ability that can be tuned by varying the content and size of the particle fillers.  相似文献   

11.
Scientists are searching potential solutions for cancer treatments as well as ways to avoid the side effects of anti‐cancer agents, via targeted drug delivery. The aim of this research is to propose dual responsive beads based on sodium alginate (SA), methylcellulose (MC), and magnetic iron oxide nanoparticles (MIONs) for controlled release of 5‐Fluorouracil (5‐FU) as model drug. The beads were prepared by the dual crosslinking of SA and MC in the presence of MIONs. The structural, thermal, morphological, magnetic characteristics as well as the release profile of 5‐FU were studied. The characterization results showed that the drug molecules and MIONs were well dispersed in the polymeric matrix. The cumulative release percentage was ca. 80% at pH = 4.2 and 40% at pH = 7.2 after 6 h. Thus, the sensitivity of beads on the pH value was verified. Moreover, the release profile exhibited reduction with an increase in the concentration of MIONs under an external magnetic field. The obtained results confirmed the dual sensitive release of 5‐FU (i.e., PH/magnetic) that can be used for the targeted and controlled drug delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45143.  相似文献   

12.
Copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEGMA) and isopropanol as a diluent were prepared by photopolymerization. The swelling kinetics, mechanical properties, drug release behaviors, and the interaction between various drugs and the present copolymeric gels were investigated in this study. The results showed that the addition of PEGMA could effectively increase the equilibrium water content and the diffusion coefficient and penetration velocity of water though the gels. Although Young's modulus increased with the increase of PEGMA content, the resulting gels had smaller elongation and more brittle characteristics. The drug release behavior was strongly dependent on the interaction between the present copolymeric gels and drugs such as caffeine, crystal violet (CV), phenol red, and vitamin B12.  相似文献   

13.
A series of hybrid nanocomposite hydrogels, based on gelatin and intercalated hydrotalcite (IHT), crosslinked with glutaraldehyde, was prepared in this study. The microstructures of the IHT and sample gels were identified by X‐ray diffraction (XRD). Swelling behaviors and physical properties of these hybrid gels were investigated. XRD results indicated that exfoliation of IHT was achieved in the hybrid nanocomposite gels. The results indicated that adding a small amount of IHT could effectively decrease the swelling ratio of the hybrid gels, but adding excess IHT could increase the swelling ratio of the nanocomposite hybrid gels. The crosslinking densities (ρx) of the present gels varied with IHT content and swelling ratio of the gels. The drug release behaviors of these gels were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 500–507, 2006  相似文献   

14.
Terpolymeric devices consisting of acrylamide, methacrylamide and acrylic acid were synthesized and the release of the model drug riboflavin from these devices was studied at the physiological temperature 37°C. The gels exhibit a sharp pH‐dependent release behavior. The devices released nearly 42.2 ± 2.6% drug at pH 1.0 while nearly 95.3 ± 3.2% drug was released at pH 7.4. With increasing concentration of cross‐linker in the gel, the drug released was found to decrease. Moreover, with low content of cross‐linker a nearly zero‐order profile was obtained. The size of the cylindrical devices also affected the release kinetics and a linear dependency was observed between t1/2 (ie, the time required for 50 % release) and the square of the diameter, thus supporting the Tanaka–Fillmore theory. The molar ratio of acrylamide and methacrylamide also affected the dynamic release of riboflavin. It was found that variation in transit time could also affect the drug‐releasing capacity of the devices. Finally, the average and ‘late‐time’ diffusion coefficients for the gels having different initial loads were also evaluated. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
In this research, the controlled release of proteins from magnetite (Fe3O4)–chitosan (CS) nanoparticles exposed to an alternating magnetic field is reported. Fe3O4–CS nanoparticles were synthesized with sodium tripolyphosphate (TPP) molecules as a crosslinking reagent. Bovine serum albumin (BSA) was used as a model protein, and its controlled release studied through the variation of the frequency of an alternating magnetic field. The results show the successful coating of CS and BSA on the Fe3O4 nanoparticles with an average diameter of 50 nm. Intermolecular interactions of TPP with CS and BSA were confirmed by Fourier transform infrared spectroscopy. The application of low‐frequency alternating magnetic fields to such magnetic CS nanoparticles enhanced the protein release properties, in which the external magnetic fields could switch on the unloading of these nanoparticles. We concluded that enhanced BSA release from nanoparticles exposed to an alternating magnetic field is a promising method for achieving both the targeted delivery and controlled release of proteins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43335.  相似文献   

16.
This research paper describes the development, optimization and in vitro characterization of chemically cross-linked pectin–polyvinyl alcohol-co-poly(2-Acrylamido-2-methylpropane sulfonic acid) semi-interpenetrating polymer network hydrogel [pectin–PVA-co-poly(AMPS) semi-IPN hydrogel] for controlled delivery of model drug tramadol HCl. Response surface methodology based on 32 factorial design was used for optimization and investigating the effect of independent factors: polymer-blend ratio (pectin:PVA = X 1) and monomer (AMPS = X 2) concentration on the dependent variables, swelling ratio (q 18th), percent drug release (R 18th, %), time required for 80 % drug release (t 80 %, h), drug encapsulation efficiency (DEE, %) and drug loaded contents (DLC, mg/g) in pectin-PVA-co-poly(AMPS) gels prepared by free radical polymerization. The optimized semi-IPN gel (FPP-10) showed controlled in vitro drug release (R 18th) of 56.34 % in 18 h, t 80 % of 30 h, and DEE of 23.40 %. These semi-IPN hydrogels were also characterized through SEM, FTIR, sol–gel analysis, swelling studies and drug release characteristics. Therefore, this newly synthesized polymeric network could be a potential polymeric system for controlled drug delivery of tramadol HCl for prolonged drug release.  相似文献   

17.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

18.
The microporous hydrogels (Pn‐Cm gels) composed of poly(dimethylaminoethyl methacrylate) and carboxymethylchitosan were synthesized in situ radical polymerization by using nano γ‐Fe2O3 particles as pore‐agent. The microporous structure formed through eliminating the Fe2O3 particles was designed to achieve a faster response rate and better drug loading effect. Comparing to the neat gels, Pn‐Cm gels exhibit deteriorative mechanical properties with the increased pores, while the gels still keep the elastic network structure which could bear some degree of tensile and compression deformation. Meantime, Pn‐Cm gels show similar temperature and pH double responsiveness with same isoelectric point shrink as that of neat gels, the swelling ability decreases slightly, and the deswelling rate increases with the increase of pores. Moreover, the 5‐fluorouracil was used as a target drug to explore the potential of this gel applied as drug‐release system. For Pn‐Cm gels, the more pores and carboxymethyl chitosan inside the gels are beneficial to the drug loading, all gels show a burst release of drug, being followed by a slow and sustained release with different rate. Comprehensively, the Pn‐Cm gels exhibit a better sustained release effect in the simulated stomach condition (pH = 2.1), the related release mechanism could be interpreted by the superposition of Fickian diffusion. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45326.  相似文献   

19.
The enhancement of the surface alignment by magnetic field had a great theoretical and practical significance in the improvement of electrochemical capacitor. In the present study, the NiO nanowires were synthesized by liquid-phase reduction method, and the electrode was prepared within external magnetic field. The effects of magnetic field on the electrode surface and the electrochemical behavior were investigated. X-ray diffraction and scanning electron microscope studies showed that the applied magnetic field results in an orderly surface structure of the electrode, which induced an effective transfer path for the electrons and ions. Meanwhile, the orderly electrode surface improved the electrochemical capacitance, as well as decreased the internal resistance. It was found on the cyclic voltammetry and galvanostatic charge/discharge measurements that the electrode prepared with the magnetic field displays an increased capacitance (506 F g?1), high power density (135.8 W kg?1) and energy density (17.6 Wh kg?1), and improved cycle stability compared to the electrode without magnetic field. Electrochemical impedance spectroscopy results demonstrated enhanced electrochemical properties for the addition of magnetic field.  相似文献   

20.
In this study, chemically modified iron oxide nanoparticles with super paramagnetic behavior and biodegradable properties were prepared through the reaction of a polymeric layer with surface hydroxyl functional groups of magnetic nanoparticles (MNP). For this purpose firstly, MNP was grafted with hexamethylene diisocyanate. Then, carboxymethyl cellulose which was modified with the hexamethylenediamine (mCMC) as a shell was coated and reacted simultaneously on MNP-grafted hexamethylene diisocyanate to form a polymeric core–shell (MNP/mCMC). The structural, morphological, thermal, and magnetic properties of the synthesized magnetite nanocomposite were confirmed by Fourier transform infrared spectrophotometer, thermal gravimetric analysis, X-ray diffraction, vibrating sample magnetometer, and scanning electron microscopy. The size of the resulting MNP/mCMC was approximately between 70 and 120 nm. Doxorubicin (DOX) as a model anticancer drug was used. The in vitro release of DOX from the MNP/mCMC was investigated and indicated that the release speed of the DOX could be well controlled. Release profiles of the DOX and its loading capacity were determined by ultraviolet–visible spectroscopy absorption measurement at λ max 483 nm. The obtained results suggest that the prepared magnetite nanocomposite would be beneficial as a targeted anti-tumor drug carrier for pharmaceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号