首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane foam is a polymeric material having cellular structure. Multifunctional polyurethane foams reinforced with nanofiller have combined enhanced specific properties with density reduction. This article primarily considers important aspects of various foam processing techniques. Numerous nanofillers such as graphite, graphene, graphene oxide, carbon black, carbon nanotube, nanoclay, and inorganic nanoparticle have been reinforced in polyurethane foam. Particular attention is given to various categories of polymer/carbon nanofiller and polymer/inorganic nanofiller composite foams. Applications of polyurethane composite foams have been focused with relevance to aerospace and automotive industry, radar absorbing and electromagnetic interference shielding, oil absorbants, sensors, fire proof, shape memory, and biomedical materials.  相似文献   

2.
Manufacture of thermoplastic foams with a fine cellular structure (a higher expansion ratio, a higher cell density, and smaller cell sizes) is challenging work due to the weak viscoelastic behavior and the unsuitable crystallization behavior of common thermoplastic materials. In this work, a novel method of making microcellular foams with micro-/nano-fibrillar reinforced polymeric composites (M/NFC) is introduced, which shows various advantages compared to conventional foams. The M/NFC foams have improved cellular structures, excellent mechanical properties, and enhanced thermal insulation properties, which make them popular candidates for structural applications and insulative products. Various methods to manufacture of M/NFC foam are summarized. To understand the fundamental mechanisms of the foaming enhancement by incorporating micro-/nano-size fibrils, the rheological and crystallization behavior of the M/NFC are analyzed. It is shown that the micro-/nano-fibrils can strengthen the melt strength, induce faster crystallization, and increase the number of crystals. Due to the improvement of the cell morphology and the stiffness of the cell walls, the reinforced foams have superior mechanical properties. A hierarchically porous structure in high expansion ratio reinforced foams has also been developed. It is believed that the nano-size holes in the cell walls can further reduce the thermal conductivity of the foams.  相似文献   

3.
Cellular polymer nanocomposites can combine high mechanical performance with low density. However, the manufacturing of porous nanocomposites into complex shapes can represent a challenge. Therefore, this article deals with the preparation, characterization, and 3D printing of porous nanocomposites. The filaments were extruded from the polymer nanocomposite filled by thermal chemical blowing agent, and then processed by 3D printing into the required shapes. In-situ and post-treatment foaming strategies were investigated and compared. The nanoparticles (NPs) significantly affected the processing, structure, thermal and mechanical properties of polymeric foams. The NPs, serving as a nucleating agent, allowed preparation of smaller pores and led to finer and more homogeneous foams. At the same time, they reinforced foam walls and thus improved mechanical properties. Moreover, NPs catalyzed decomposition of the blowing agent grains at lower temperature which brought about faster and more efficient foaming. This study showed the straightforward approach to prepare mechanically robust lightweight 3D printed materials.  相似文献   

4.
Direct foaming of colloidal suspensions is a simple and versatile approach for the fabrication of macroporous ceramic materials. Wet foams produced by this method can be stabilized by long-chain surfactants or by colloidal particles. In this work, we investigate the processing of particle-stabilized wet foams into crack-free macroporous ceramics. The processing steps are discussed with particular emphasis on the consolidation and drying process of wet foams. Macroporous alumina ceramics prepared using different consolidation and drying methods are compared in terms of their final microstructure, porosity, and compressive strength. Consolidation of the wet foam by particle coagulation before drying resulted in porous alumina with a closed-cell structure, a porosity of 86.5%, an average cell size of 35 μm, and a remarkable compressive strength of 16.3 MPa. On the other hand, wet foams consolidated via gelation of the liquid within the foam lamella led to porous structures with interconnected cells in the size range from 100 to 150 μm. The tailored microstructure and high mechanical strength of the macroporous ceramics can be of interest for the manufacture of bio-scaffolds, thermal insulators, impact absorbers, separation membranes, and light weight ceramics.  相似文献   

5.
Ablation behaviour of poly(hydridomethylsiloxane) derived open and closed porous structured SiOC ceramic foams was evaluated using oxy-acetylene flame at 1500 °C for various time durations. X-ray diffraction and scanning electron microscopy analyses of ablated SiOC ceramic foams revealed the formation of a thin protective SiO2 layer inhibiting further oxidation. The closed porous structured SiOC ceramic foams exhibited very low mass ablation rate in contrast to open porous structured SiOC ceramic foams owing to the differences in thermal energy dissipation mechanism. The feasibility of the plausible foam reduction reactions pertaining to the ablation mechanism was further investigated by computing the Gibbs energy and HR-TEM analysis. The study corroborated the significance of tailoring the microporous structured SiOC ceramic foams as potential thermal protection material for high temperature applications.  相似文献   

6.
This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase, in which phase separation between polymer and porogen occurs in foam phase instead of that in water phase by using the traditional solvent evaporation method. The method provides outstanding features, including being time-saving, of high-yield and able for continuous production, in which formation of porous polymeric microspheres finished within 3 min with a high production yield up to approximate 95 wt% and the process was able to be developed into a continuous process for production of porous polymeric microspheres. It was also universal to non-crosslinked polymers since the method is a development on the traditional emulsion solvent evaporation method. The new method is efficient and can be used potentially on the industrial scale for continuous production of porous polymeric microspheres.  相似文献   

7.
Ceramic foams are cellular structures composed of a three-dimensional network of struts. These highly porous materials have a lot of applications as filters for molten metal, hot gas and diesel engine exhausts filters, catalyst carriers, biomaterials, thermal insulators for furnaces and aerospace applications, gas combustion burners and lightweight building materials.As the application domains for these materials vary widely, the ultimate properties of the foam posed by the specific use are also diverse. As a consequence, different routes for the production of these foams have been developed, each with their own window of properties.In this contribution we focus on three manufacturing techniques: (1) reaction bonded modified polyurethane technique, (2) gel casting and (3) a hollow beads method. The flow sheets of these manufacturing routes are explained with the main accent on the shaping aspect of the method.The advantages and disadvantages of these methods are described on the hand of their structure, characterized by field emission scanning electron microscopy (FESEM), computer-assisted microtomography (μCT), image analysis (IA) and mechanical tests.Finally, some examples of ceramic foam projects are presented as the recycling of Al, the trapping of the particles of diesel engines, and the synthesis of scaffolds for bone substitutes.  相似文献   

8.
In the face of human society’s great requirements for health industry, and the much stricter safety and quality standards in the biomedical industry, the demand for advanced membrane separation technologies continues to rapidly grow in the world. Nanofiltration(NF) and reverse osmosis(RO) as the highefficient, low energy consumption, and environmental friendly membrane separation techniques, show great promise in the application of biomedical separation field. The chemical compositions, microstr...  相似文献   

9.
本文介绍了泡沫炭的主要性能和泡沫炭复合材料:泡沫炭作为一种新型的炭材料,受到了广泛的关注。它具有密度小、强度高、导电、导热、热稳定、化学稳定等良好的物理和化学性能。泡沫炭复合材料对相对泡沫炭来说力学性能有了一定的提高,其复合材料主要分为五类。本文分别介绍了不同增强相对泡沫炭性能的提升,并就泡沫炭的复合增强方面综述了近年来国内外对泡沫炭及其复合材料的最新研究进展,并指出了泡沫炭的未来研究方向。  相似文献   

10.
Three-dimensional ceramic nanofiber-assembled materials with large specific surface area and excellent thermal insulation properties are attracting increasing interests for their unique structure and promising applications. In this paper, we propose a facile methodology to fabricate three-dimensional silicon nitride nanofiber-knitted ceramic foams via in situ reactive synthesis from silicon foams. Silicon particle-stabilized foams are fabricated for the first time using long-chain surfactant cetyltrimethyl ammonium bromide as a hydrophobic modifier. First, the fabrication and stability of silicon foams are investigated. Based on the stable silicon foams, silicon nitride-based nanofiber-knitted ceramic foams are synthesized via in situ reactive sintering in nitrogen atmosphere. The novel ceramic foam materials consist of three-dimensional nanofiber-assembled strut wall and nanofiber-spheres in the pores. The diameter of obtained silicon nitride nanofibers ranges from 15 to 100 nm. The unique nanofiber-knitted foams may have potential applications in specific fields, including catalysis, adsorption, separation, and thermal insulation.  相似文献   

11.
泡沫碳化硅陶瓷材料的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
刘霞  李洪  高鑫  李鑫  王磊  段虹  李鑫钢 《化工进展》2012,31(11):2520-2525,2541
泡沫碳化硅陶瓷材料除了孔隙率高、比表面积大,还具有相对密度小、优良的热学、力学、电学、声学性能等特性,已经广泛应用于化工、机械、生物、环保等领域。本文总结了泡沫碳化硅陶瓷材料的主要制备技术,包括粉末烧结法、固相反应烧结法、含硅树脂热解法以及气相沉积法等。阐述了泡沫碳化硅陶瓷材料的几种优良特性,包括结构特征、流体阻力、抗氧化性、吸波性等。最后举例介绍了该陶瓷在催化、过滤、生物学等领域的应用现状,重点介绍了其作为塔内件在化工领域中的应用,指出为满足对泡沫碳化硅陶瓷更高性能的需求,不仅要对现有技术进行集成创新,更要挖掘和开发泡沫碳化硅的潜在优势。  相似文献   

12.
Yttria-stabilized zirconia (YSZ) porous ceramic foams were fabricated using YSZ microspheres with holes on the surface to determine their properties as insulation materials. Highly porous YSZ ceramics with bimodal pore structures, such as internal pores in single hollow spheres and external pores between the spheres, were successfully prepared using YSZ spheres as raw materials. Additionally, holes were added to the shells to reduce continuous thermal pathways and significantly enhance the insulation properties. Furthermore, by adding holes on the surface of the sphere, the porous foams using a hollow sphere exhibit a maximized porosity of 80.69%, remarkably enhanced their insulation properties with low thermal conductivity (0.10 W/m-K), and have sufficient compressive strength to protect the green body (5.7 MPa). The mechanical strength of the YSZ porous foam was maintained owing to the uniform arrangement of the supports.  相似文献   

13.
In this work, we first synthesized vinyl-terminated polyborosiloxane (pBS) filler, and then incorporated it into silicone rubber foam (SRF) matrix to prepare composite materials through a simple chemical dehydrogenative foaming method under ambient conditions. The pBS filler with reactive groups could form physical and chemical crosslinking networks in SRF, leading to an excellent dispersion level of pBS in the SRF matrix. Moreover, the inserted pBS could remarkably improve the mechanical and flame-retardancy properties of SRF-pBS composites. Intriguingly, the SRF-pBS6 foam containing 6 wt% of pBS possessed a uniform porous structure and balanced mechanical properties (σb = 65.4 kPa, εb = 56.7%, compression stress 97.1 kPa), thermal conductivity (0.102 W (m K)?1), limiting oxygen index (29.8%) and UL-94 rating (V-0) among the prepared foams. In addition, the incorporated pBS (6 wt%) could synergistically catalyze the formation of a silicon–boron strengthened ceramic-like protective layer under fire and was capable of suppressing heat and smoke production in the SRF-pBS6 foam. The present work provides a promising way for developing high mechanical and flame-retardant polymeric foam materials with good thermal insulation. © 2021 Society of Industrial Chemistry.  相似文献   

14.
《Ceramics International》2022,48(1):732-743
This research investigated a new method to produce geopolymer foams from blast furnace slag (BFS) with poly(lactic acid) (PLA) covering the developed porosity into the materials. A porous alkali-activated material was developed, and a biodegradable polymer was used to cover the geopolymer in the bulk state. Geopolymer foams were synthesized with a sodium metasilicate solution, and the porosity was developed by adding hydrogen peroxide (H2O2). Foams of materials were produced with two stoichiometries of 1.4 and 1.6 g/L between solid/liquid with a hydrogen peroxide solution. The dimensional stability was achieved after coating geopolymer foams with PLA, improving the molding capacity on different geometries for the composite materials. Specimens of the geopolymer foam/PLA composites were characterized by X-ray fluorescence (XRF), Fourier transformed infrared (FTIR), thermogravimetry (TGA), and field emission gun scanning electron microscopy (FEG-SEM). The permeation analysis of metal oxide particles through the composites foam specimens was performed using water dispersions containing bismuth oxide or titanium oxide. The test resulted in high performance in the retention of particulate materials. The highlights of the results indicated the efficiency in the synthesis of geopolymer foam, a good formation of porosity, and an effective PLA coating on the internal interfaces of geopolymer foam through the development of a new bulk state coating method, improving the dimensional stability and the retention of bismuth and titanium oxides particles by the produced geopolymer foams for water depollution.  相似文献   

15.
桑可正  刘林  来萌  李立新 《硅酸盐学报》2012,40(4):498-499,500,501,502
采用有机泡沫浸渍法制备了氧化铝泡沫陶瓷,考察了工艺参数对泡沫陶瓷结构和性能的影响,研究了溶胶–凝胶法在泡沫陶瓷表面形成凝胶涂层的制备工艺。结果表明:对有机泡沫进行15%NaOH水溶液处理及5%PVA水溶液活化处理,采用离心挂浆工艺,制备了3种规格的的泡沫陶瓷,其孔尺寸范围为0.8~1.2mm,孔筋尺寸为0.1~0.25mm。泡沫陶瓷的抗压强度随ppi值(每英寸模板孔数)的增大而提高;二次挂浆有利于抗压强度的提高。泡沫陶瓷的抗热震性能随ppi值的减小而增加。采用负压浸胶工艺,可较好地在泡沫陶瓷表面形成TiO2凝胶涂层。  相似文献   

16.
One of the next-generation structural materials is carbon foam. Porous materials have become an intriguing alternative material to traditional ones in many utilizations based on their light weight and incomparable properties. Coal or fossil oils are conventionally used to produce pitch, phenolic resin, and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, spruce tree sawdust was liquefied under mild conditions with different solvent type (phenol or phenol + bio-oil mixture). The unique aspect of this work is the synthesis of bio-polyol when pyrolytic oil is used as an alternative to phenol in the solvolysis reaction and its evaluation in carbon foam production with multilayer graphene sheets. Therewithal, the ratios of biomass to solvent were 1/3 as well as 1/5, and the comparison of product characteristics is another originality of the study. Slow pyrolysis of spruce tree sawdust was performed under static atmosphere and bio-oil was characterized with elemental analysis and various chromatographic and spectroscopic techniques. The effect of mass ratio of biomass/solvent on the characteristics of porous resin foams synthesized from liquefaction product. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams, and activated carbon foams from liquefied spruce tree sawdust was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, true/bulk density, and compressive strength tests. Although the surface area values decreased when bio-oil was added as a solvent, it was determined that the compression strengths of the produced carbon foams (up to 1.080 MPa) were higher than that of conventional phenolic foams. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47185.  相似文献   

17.
开孔型聚合物微发泡材料研究进展   总被引:1,自引:0,他引:1  
何亚东 《塑料》2003,32(6):40-45
通过回顾目前几种微孔材料成型的主要方法,介绍了微发泡成型技术用于制备开孔型微孔材料的必要性。讨论了关于开孔型聚合物微发泡材料制备技术及研究方法的几种思路,分别是不相容聚合物共混、泡孔合并模型、熔融挤出发泡、开孔剂法和气体浓度阈(值)等方法,这些方法的微孔成型机理各不相同,所制备的材料微观结构也各有特点。文献分析表明:微发泡成型方法用于开孔型微孔材料的制备是一种非常有前景的技术。  相似文献   

18.
ABSTRACT

In this paper, polyether imide (PEI) having properties such as a high glass transition temperature of 216°C, high heat resistance, high flame resistance, low smoke generation and a high melting point within the range of 400°C, having low thermal conductivity and low dielectric constant was chosen to be a polymeric foam. Water vapor-induced phase separation method was used to prepare PEI foams. PEI foams were reinforced with nano-silica (weight 1, 3 and 5%) in order to alter the dielectric properties, thermal conductivity and degradation kinetics of foamed polymer. The tested samples showed a reduction in dielectric constant than that of solid PEI but at a higher loading, it showed a higher value due to threshold percolation and a reduction in thermal conductivity was observed for foamed PEI. From thermogravimetric analysis, we can conclude that PEI with 3% filler loading showed better thermal stability compared to other PEI foam compositions.  相似文献   

19.
Polyacrylonitrile (PAN) foams with different pore structures were prepared for the fabrication of macroporous carbon monoliths. The foams were prepared through thermally induced phase separation (TIPS) method using dimethyl sulfone (DMSO2) as a crystallizable diluent. Honeycomb-like porous foam is obtained from PAN/DMSO2 mixture containing about 5 wt.% PAN, and those with channel-like pores are resulted from the mixtures with 10–40 wt.% PAN. However, they only have few mesopores and the porosity is as low as 30–47% for the foams prepared from those mixtures containing 50–60 wt.% PAN. Real-time observation with polarized optical microscopy reveals that the channel-like structure stems from the spherulitic orientation of DMSO2 crystals in the polymer matrix. Taking into account this morphology, DMSO2 crystals are capable of acting as in situ formed templates, which subsequently enable to shape the final pore structure of PAN foams. Macroporous carbon monoliths with honeycomb- or channel-like pores were constructed from PAN foams by oxidative stabilization and carbonization. Their graphitic structure and specific surface areas were analyzed by wide-angle X-ray diffraction and Brunauer–Emmett–Teller measurement. This TIPS method using crystallizable diluent provides a new route to control the porous structure of PAN foams for carbon materials.  相似文献   

20.
Highly porous ceramic foams can be produced by combining particle stabilized foams and gelcasting concepts. Sulfonate‐type surfactants are selected to weakly hydrophobize the alumina surface and stabilize air bubbles in suspensions containing gelcasting additives, polyvinyl alcohol (PVA), and 2,5‐dimethoxy‐2,5‐dihydrofurane (DHF). The aim of this work was to prepare large complex‐shaped ceramic foam objects with homogeneous microstructure and high porosity. A key to avoiding drying cracks is to strengthen the wet green body via gelcasting. The influence of the amount of gelcasting additives on the mechanical strength of the ceramic foam green bodies is investigated as well as the effect of using cross‐linking agent versus the addition of just a binder. The presence of a cross‐linked polymeric network within the green body increases its mechanical strength and minimizes crack formation during drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号