首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract

Three-dimensional porous scaffolds based on biodegradable polymers are widely researched for applications to replace and restore the functions of diseased or damaged organs. The requirements for the scaffolds include: highly interconnected pore structures to facilitate cell adhesion for tissue regeneration, maintenance of mechanical properties and structural integrity until cells adapt to its environment and biodegradability with a controlled degradation rate. This paper focuses on the development and in vitro biodegradation behaviour of poly (D,L-lactide-co-glycolide acid) (PLGA) 75/25 and changes on pore morphology affected by initial pore sizes and degradation media. The pore morphology, mechanical properties, and geometric transformation were examined over the course of 13 weeks. It is concluded that the PLGA 75/25 scaffolds degraded after seven weeks and completely degraded after 13 weeks. The degradation time of scaffolds with small pores and in distilled water was comparatively shorter due to poorer interconnectivity of the pores and a more aggressive environment.  相似文献   

2.
Biodegradable poly(l -lactide-co-glycolide) (PLGA)/multiwalled carbon nanotubes (MWCNTs) scaffolds produced by thermally induced phase separation (TIPS) are studied for bone regeneration. Their magnetic properties, cytotoxicity, and in vitro degradation are investigated. Certain properties are analyzed at 37 °C over 16 weeks in phosphate buffer saline (PBS) solution, as a function of degradation time: morphology, mass loss, pH value of PBS, and thermal behavior. The presence of small quantities of nanotubes in the scaffolds, ≤0.5 wt %, leads to a weak magnetic response although the PLGA was diamagnetic. The incorporation of MWCNTs in the scaffolds generated a morphology and a very different process of in vitro degradation than might be expected in a PLGA scaffold. The in vitro degradation process started on week 13 and rapidly advanced, although the structural integrity of the scaffolds was maintained and no collapse of the structure occurred. Cytotoxicity tests on the samples showed cytotoxicity behavior at concentrations of over 0.3 wt % MWCNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48439.  相似文献   

3.
《Polymer Composites》2017,38(11):2402-2410
Tissue engineering combines artificial scaffolds and living cells in order to reconstruct damaged tissues and organs. The biodegradable scaffolds should maintain their mechanical properties during first stages of the regeneration. The aim of this study was to investigate the extent the degradation affects the mechanical stability of novel biodegradable composite scaffolds in relation to their composition. The scaffolds were made using fused deposition modeling. They were composed of ternary composites containing poly(ε‐caprolactone) (PCL), 5 wt% of tricalcium phosphate (TCP) and 5, 15, and 25 wt% of poly(lactide‐co‐glycolide) (PLGA). Scaffolds made of pristine PCL and binary composite PCL–TCP were tested as reference samples. The degradation experiment was carried out in simulated body fluid at 37°C for 12 weeks. Mechanical tests were carried out in a mechanical tester. Strain was measured using digital image correlation and crossbar displacement. Chemical composition had a significant effect on initial mechanical properties and their changes during degradation. The initial apparent Young's modulus of ternary composite scaffolds was two times higher than that of PCL–TCP. Higher PLGA concentration yielded faster decrease of the mechanical properties. At the end of the experiment, there were no significant differences of the modulus among all tested materials although degradation of the ternary composite scaffolds was significantly advanced. POLYM. COMPOS., 38:2402–2410, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
Magnetic materials have shown significant influence in the process of bone regeneration. In order to combine the bone repairing capability of tricalcium phosphate (TCP) ceramic with magnetic material, porous TCP–MgFe2O4 composite scaffolds were successfully prepared by three-dimensional (3D) gel-printing technology, and the effect of different MgFe2O4 contents on TCP–MgFe2O4 composite scaffolds was studied. The viscosity of printing slurry prepared with polyvinyl alcohol as binder decreased with the increase of shear rate, showing shear thinning. Results show that following with MgFe2O4 content increasing from 30 to 70 wt%, the compressive strength of the composite scaffolds increased from 8.45 to 10.58 MPa, the saturation magnetization increased from 3.07 to 7.20 emu/g, and the weight loss rate of degradation in vitro increased from 1.83% to 2.1% after 4 weeks, respectively. Live and dead staining shows that MC3T3-E1 cells had better proliferation on TCP–MgFe2O4 composite scaffolds than TCP scaffolds. Compared with pure TCP scaffolds, the addition of MgFe2O4 improves the comprehensive performance of scaffolds and meets the application requirements of bone repairing.  相似文献   

5.
This paper reports the effect of the combined technique of dehydrothermal treatment (DHT) and a mixture of 1‐ethyl‐3(3‐dimethylaminopropyl) carbodiimide (EDC) and N‐hydroxysuccinimide (NHS) crosslinking on the physicochemical properties of collagen/hydroxyapatite materials. Collagen and collagen/hydroxyapatite porous scaffolds containing different amounts of collagen and hydroxyapatite were prepared with use of the freeze‐drying technique. All samples were capable of absorbing a large quantity of phosphate buffered saline. Samples crosslinked by DHT+EDC/NHS presented higher resistance to collagenase degradation (with slightly reduced degradation in DHT+EDC/NHS crosslinked scaffolds prepared from 2% collagen solution), whereas DHT scaffolds exhibited faster degradation. Mechanical testing results suggested that scaffolds crosslinked by DHT+EDC/NHS treatment have an improved compressive modulus compared with EDC/NHS crosslinking. The qualitative analysis of colour intensity resulting from the CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS) led to the conclusion that all samples, regardless of the crosslinking method, were well tolerated by cells. However, DHT and EDC/NHS crosslinked scaffolds seem to support better cell viability, in contrast to DHT+EDC/NHS crosslinked scaffolds that support cell differentiation instead. DHT+EDC/NHS crosslinked scaffolds markedly increase the specific alkaline phosphatase activity of cells, which may be of benefit in bone tissue engineering. © 2017 Society of Chemical Industry  相似文献   

6.
Tissue engineering is a new approach for regeneration of damaged tissues. The current clinical methods such as autograft and allograft transplantation are not effective for repairing bone damages, mainly due to the limited available sources and the donor-site side effects. In this research, the nanocomposite poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nano hydroxyapatite (nHA) scaffolds with different nHA ratios for bone regeneration were utilized. The diameter and porosity of scaffolds were approximately 200?nm and 74%, respectively. The degradability test of the scaffolds suggests a low degradation rate with total degradation of 30% after 3 months. Cytotoxicity result showed that cultured osteoblast cells (MC3T3) on nanocomposite scaffolds had superiority in terms of higher proliferation and attachment in comparison with PHBV scaffold. The protein expression of alkaline phosphatase illustrated that nanofibrous scaffold containing hydroxyapatite had the highest alkaline phosphatase activities as a result of better proliferation. These results recommend that PHBV/nHA scaffolds are suitable candidates for bone tissue engineering.  相似文献   

7.
Composite scaffolds for applications in bone engineering from poly(D,L ‐lactide) (PDLLA) incorporated with different proportional bioactive wollastonite powders were prepared through a salt‐leaching method, using NH4HCO3 as porogen. The pore structures and morphology of the scaffolds were determined by scanning electron microscopy (SEM). The bioactivity of composite materials was evaluated by examining its ability to initiate the formation of hydroxyapatite (Ca10(PO4)6(OH)2)(HAp) on its surface when immersed in simulated body fluids (SBF). The in vitro degradation behaviors of these scaffolds were systematically monitored at varying time periods of 1, 2, 4, 6, 8, 11, 14, 17, 20, 24, and 28 weeks postimmersion in SBF at 37°C. FT‐IR, XPS, XRD, and SEM measurements revealed that hydroxyapatite commenced to form on the surface of the scaffolds after 7 days of immersion in SBF. The measurements of weight loss, pH, and molecular weight of the samples indicated that PDLLA/wollastonite composite scaffolds degraded slower than the pure PDLLA scaffolds do. Addition of wollastonite enhanced the mechanical property of the composite scaffolds. The in vitro osteoblast culture experiment confirmed the biocompatibility of the scaffold for the growth of osteo‐blasts. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009.  相似文献   

8.
Biocomposite scaffolds composed of PVA, ovalbumin, cellulose nanocrystals, and nanohydroxyapatite were fabricated by freeze-drying method. The results revealed that the different fractions of nanohydroxyapatite and cellulose nanocrystals provide the mechanical strength and stiffness to the desired biocomposite scaffolds. In vitro biomineralization showed the formation of apatite onto the surface of obtained biocomposite scaffolds and increased as amount of nanohydroxyapatite increased. The obtained results suggest that the different combinations of these four biomaterials can be used to fabricate highly porous scaffolds with desired mechanical performance and degradation rate by adjusting ratio for potential use in low load-bearing applications.  相似文献   

9.
In this study, porous biphasic calcium phosphate (BCP) scaffolds were fabricated by a freeze–gel casting technique using a tertiary-butyl alcohol (TBA) based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The synthesized porous BCP scaffolds (two different sintering temperatures) exhibit compressive strength of 46.8 MPa for 43.0% porosity and 33.1 MPa for 45.9% porosity, respectively. After immersion in Hank's balanced salt solution (HBSS) for 1, 2, 4, 8 weeks, a precipitation started to be formed with individual small granules on the scaffolds surface. In the case of BCP scaffolds sintered at 1200 °C, β-TCP were slowly degraded with increasing the immersing time; on the other hand, α-TCP (from BCP scaffolds sintered at 1300 °C) was extremely degraded within 1 week of immersing. This behavior could be due to a fast hydrolysis (dissolution–reprecipitation) as a phase transformation from α-TCP to brushite or apatite compared to the β-TCP. After immersion in HBSS, overall the compressive strength of the scaffolds reduced by the gradual degradation in biological environment solution. This behavior is consistent with the degradation behavior of scaffolds after immersion in HBSS.  相似文献   

10.
Scaffolds made from single hydroxyapatite (HAp) possess neither biological properties of bone nor functions of promoting vascularization and inhibiting immune rejection. To overcome these drawbacks of HAp, Angelica sinensis polysaccharide (ASP)/HAp composite scaffolds were prepared and its application possibility in bone tissue engineering was studied. The scaffolds were examined by mechanical test, releasing test, degradation test, and histological evaluation. The results showed that the scaffolds had good degradation and ASP releasing. The histological examination indicated that ASP/HAp material could effectively promote vascularization, hematopoiesis, and osteogenesis in mice. In conclusion, the composite material could be used for bone tissue engineering with good prospect.  相似文献   

11.
Novel porous composite scaffolds for tissue engineering were prepared from aliphatic biodegradable polyurethane (PU) elastomer and hydroxyapatite (HA). It was found that the aliphatic PU was possible to load up to 50 wt % HA. The morphology and properties of the scaffolds were characterized by scanning electron microscope, X‐ray diffraction, infrared absorption spectra, mechanical testing, dynamic mechanical analysis, and in vitro degradation measurement. The results indicated that the HA/PU scaffolds had an interconnected porous structure with a pore size mainly ranging from 300 to 900 μm, and 50–200 μm micropores existed on the pores' walls. The average pore size of macropores and micropores are 510 and 100 μm, respectively. The compressive strength of the composite scaffolds showed higher enhancement with increasing HA content. In addition, the polymer matrix was completely composed of aliphatic component and exhibited progressive mass loss in vitro degradation, and the degradation rate depended on the HA content in PU matrix. The porous HA/PU composite may have a good prospect to be used as scaffold for tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Poly(?‐caprolactone) (PCL)/gelatin (GE) nanofiber scaffolds with varying concentrations of lanthanum chloride (LaCl3, from 0 to 25 mM) were fabricated by electrospinning. The scaffolds were characterized by scanning electron microscopy, contact angle and porosity measurements, mechanical strength tests, and in vitro degradation studies. In vitro cytotoxicity and cell adhesion and proliferation studies were performed to assess the biocompatibility of the scaffolds, and in vivo wound healing studies were conducted to assess scaffold applications in the clinic. All prepared scaffolds were noncytotoxic, and the growth of adipose tissue–derived stem cells on LaCl3‐containing scaffolds was better than on the pure PCL/GE scaffold. Cell proliferation studies showed the greatest cell growth in the PCL/GE/LaCl3 scaffolds. Further, in vivo studies proved that the PCL/GE/LaCl3 scaffolds can promote wound healing. The results suggest that nanofiber scaffolds containing LaCl3 promote cell proliferation and have good biocompatibility, and thus potential for application in the treatment of skin wounds. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46672.  相似文献   

13.
The potential of the copolymer polycaprolactone‐co‐ poly‐d ,l ‐lactic acid (PCLLA ) as a biomaterial for scaffold‐based therapy for breast tissue engineering applications was assessed. First, the synthesized PCLLA was evaluated for its processability by means of additive manufacturing (AM ). We found that the synthesized PCLLA could be fabricated into scaffolds with an overall gross morphology and porosity similar to that of polycaprolactone. The PCLLA scaffolds possessed a compressive Young's modulus (ca 46 kPa ) similar to that of native breast (0.5 ? 25 kPa ), but lacked thermal stability and underwent thermal degradation during the fabrication process. The PCLLA scaffolds underwent rapid degradation in vitro which was characterized by loss of the scaffolds' mechanical integrity and a drastic decrease in mass‐average molar mass (M w) and number‐average molar mass (M n) after 4 weeks of immersion in phosphate buffer solution maintained at 37 °C. The tin‐catalysed PCLLA scaffold was also found to have cytotoxic effects on cells. Although the initial mechanical properties of the PCLLA scaffolds generally showed potential for applications in breast tissue regeneration, the thermal stability of the copolymer for AM processes, biocompatibility towards cells and degradation rate is not satisfactory at this stage. Therefore, we conclude that research efforts should be geared towards fine‐tuning the copolymer synthesizing methods. © 2016 Society of Chemical Industry  相似文献   

14.
Porous Poly‐l ‐lactide (PLLA) scaffolds and PLLA/nanohydroxyapatite (nHA) composite scaffolds with interconnected pore networks and a porosity of over 90% were fabricated with lyophilization techniques. In this study, the degradation behavior of PLLA and PLLA/nHA composite scaffolds is investigated over 8 weeks in phosphate buffer solution at 37°C. Thermal analysis using differential scanning calorimetry (DSC) showed that the percent crystallinity of all the samples increased by approximately 10%, which represents a considerable increase in the glass transition temperature. The melting range enthalpy of the scaffolds did not change to lower temperatures as would be expected. The spectroscopic analysis performed by Fourier transform infrared spectroscopy suggested that nHA particles should not appreciably affect the absorbance pattern when evenly mixed with the PLLA. This is consistent with the analysis of the scaffold microstructure and morphology with scanning electron microscopy, which drew a low content of nHA with no significant effect on solvent crystallization or pore structure. The compressive modulus and the yield strength of the scaffolds were investigated in conjunction with the study of their degradation rates. In comparison with the mechanical properties of the PLLA scaffolds, which remained largely unchanged, those of the PLLA/nHA composite scaffolds decreased as the degradation progressed. POLYM. ENG. SCI., 54:2571–2578, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
The design and fabrication of scaffolds and biodegradable devices using slow‐degrading polymers and composites (degradation/resorption > 2 years) involve the necessity for long‐term in vitro and in vivo studies. If multiple designs and materials need to be tested, then this would use much time and financial resources. Accelerated degradation systems aim to achieve comparable degradation profiles within a shorter period of time. This investigation considers the hydrolytic degradation of polycaprolactone (PCL) and PCL–calcium phosphate (CaP) scaffolds in 5 mol L?1 NaOH at 37 °C. The scaffolds degrade via surface erosion, which proceeds in a consistent and predictable manner. The hydrolytic degradation of PCL‐based scaffolds alone is slow, governed by their high molecular weights, crystallinity, hydrophobicity, surface‐to‐volume ratio and porosity. The incorporation of CaP significantly increases the degradation rate. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Three-dimensional PHB porous scaffolds were prepared based on the mono-membrane fabricated by emulsion templates method. The key factors of the method affecting the pore size and porosity of the PHB scaffolds were studied. The surface of PHB scaffolds were investigated by scanning electron microscope (SEM), which showed the even pore size and regularly arranged pore. The transect of the PHB scaffolds prepared using the templates method was good. Moreover, the effects of variation of surfactant content (P%) and water content (R) on the pore size and porosity of PHB films were discussed. Preliminary studies showed that when P% is less than 20%, the pore size made by emulsion templates ranged from 5 µm to 30 µm with the value of P increasing. As P% is up to 20%, it was interesting to see that the scaffolds had multi-pore size distribution, i.e., median pore sizes were about 5 µm and inside the wall of pore, there existed numerous micro-pore sizes, which can be controlled from 100 nm to 500 nm only by adjusting the parameter R of the microemulsion. The degradation experiment indicated that the degradation of PHB scaffolds were accelerated by enzyme in vitro and the porous configuration was favorable to its degradation.  相似文献   

17.
Calcium sulphate/phosphate cement (CSPC) porous scaffolds were fabricated by introduction of calcium sulphate (CS) into calcium phosphate cement utilizing particle-leaching method. The morphology, porosity and mechanical strength as well as degradation of the CSPC scaffolds were characterized. The results reveal that the CSPC with 40 wt% CS content (40 CSPC) scaffolds with a porosity of 81% showed open macropores with the pore size of 200–500 μm. In addition, the 40 CSPC scaffolds with good degree of interconnected macropores degraded 60 wt% in Tris–HCl solution after 12 weeks. The proliferation, differentiation and morphology of MG63 cells on the 40 CSPC scaffolds were determined using MTT assay, ALP activity and SEM. The results suggest that the CSPC scaffolds could stimulate cell proliferation and differentiation, indicating that CSPC scaffolds were biocompatible and had no negative effects on the cells in vitro. The CSPC scaffolds were implanted in femur bone defect of rabbits, and the in vivo biocompatibility and osteogenicity of the scaffolds were investigated. The results indicate that CSPC scaffolds exhibited good biocompatibility, degradability and osteogenesis in vivo.  相似文献   

18.
Biodegradable polymers—polyethylene oxide and poly (?-caprolactone)—were melt extruded with β-tricalcium phosphate. Breakdown analysis revealed that the percentage increase in bioceramic caused a prolonged degradation rate, with samples containing 20 wt% β-tricalcium phosphate losing significantly less weight over time in comparison to the control sample. Compression testing of samples following submission in aqueous environments revealed the composites exhibited enhanced strength with increasing bioceramic loading. The mechanical properties were significantly reduced over a period of 5 weeks. It was found that hot-melt extrusion of β-tricalcium phosphate is a viable and effective method of producing novel composite scaffolds with potential for regenerative medicine applications.  相似文献   

19.
A fibrous scaffold is required to provide three‐dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. In this study, porous scaffolds with different mass ratio of poly(lactic acid) to poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)) for tissue engineering were prepared by a modified particle leaching method. The effect of the addition of P(3HB‐co‐4HB) on microstructural morphology, compression property, swelling behavior, and enzymatic degradation of hybrid scaffolds was systematically investigated. The results indicated that this method was simple but efficient to prepare highly interconnected biomimetic 3D hybrid scaffolds (PP50/50 and PP33/67) with fibrous pore walls. The cytocompatibility of hybrid scaffolds was evaluated by in vitro culture of mesenchymal stem cells. The cell‐cultured hybrid scaffolds presented a complete 3D porous structure, thus allowing cell proliferation on the surface and infiltration into the inner part of scaffolds. The obtained hybrid scaffolds with pore size ranging from 200 to 450 µm, over 90% porosity, adjustable biodegradability, and water‐uptake capability will be promising for cartilage tissue engineering applications. POLYM. ENG. SCI., 54:2902–2910, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
Three dimensional (3D) biodegradable porous scaffolds play a crucial role in bone tissue repair. In this study, four types of 3D polymer/hydroxyapatite (HAp) composite scaffolds were prepared by freeze drying technique in order to mimic the organic/inorganic nature of the bone. Chitosan (CH) and poly(lactic acid‐co‐glycolic acid) (PLGA) were used as the polymeric part and HAp as the inorganic component. Properties of the resultant scaffolds, such as morphology, porosity, degradation, water uptake, mechanical and thermal stabilities were examined. 3D scaffolds having interconnected macroporous structure and 77–89% porosity were produced. The pore diameters were in the range of 6 and 200 µm. PLGA and HAp containing scaffolds had the highest compressive modulus. PLGA maintained the strength by decreasing water uptake but increased the degradation rate. Scaffolds seeded with SaOs‐2 osteoblast cells showed that all scaffolds were capable of encouraging cell adhesion and proliferation. The presence of HAp particles caused an increase in cell number on CH‐HAp scaffolds compared to CH scaffolds, while cell number decreased when PLGA was incorporated in the structure. CH‐PLGA scaffolds showed highest cell number on days 7 and 14 compared to others. Based on the properties such as interconnected porosity, high mechanical strength, and in vitro cell proliferation, blend scaffolds have the potential to be applied in hard tissue treatments. POLYM. COMPOS., 36:1917–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号