首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new gel polymer electrolytes (GPEs) based on different concentrations of a hydrophobic ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) entrapped in an optimized typical composition of polymer blend-salt matrix [poly(vinyl chloride) (PVC) (30 wt%) / poly(ethyl methacrylate) (PEMA) (70 wt%) : 30 wt% zinc triflate Zn(CF3SO3)2] has been prepared using facile solution casting technique. The AC impedance analysis has revealed the occurrence of the maximum ionic conductivity of 1.10 × 10?4 Scm?1 at room temperature (301 K) exhibited by the PVC/PEMA- Zn(OTf)2 system containing 80 wt% ionic liquid. The addition of EMIMTFSI into the optimized PVC/PEMA- Zn(OTf)2 system in different weight percentages enhances the number of free zinc ions thereby leading to enrichment of ionic conductivity. The structural and complexation behaviour of the as prepared polymer gel electrolytes was substantiated by subjecting these electrolyte films to X-ray diffraction (XRD) and Attenuated total reflectance - Fourier transformed infrared (ATR-FTIR) investigations. The wider electrochemical stability window ~ 3.23 V and a reasonable cationic transference number (tZn 2+) of 0.63 have been attained for the polymer gel electrolyte film containing higher loading of (80 wt%) ionic liquid. The development of the amorphous phase of these gel polymer electrolyte membranes with increasing ionic liquid content was observed from scanning electron microscopic (SEM) analysis. The results of the current work divulge the assurance of developing GPEs based on ionic liquids for prospective application in zinc battery systems.  相似文献   

2.
This paper reports the dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and ionic conductivity studies on nanosized Al2O3(aluminium oxide) filled PVA:NH4SCN:DMSO polymer composite dried gel electrolytes prepared by the wet chemistry route. Better mechanical stability and thermal behavior are noticed in the composite system. Multiple relaxation peaks seen in tangent loss measurements (in DMA studies) have been suitably correlated. Enhancement in ionic conductivity has been noticed with an optimum value of 4.02 × 10?3 Scm?1 for 4 wt% nano Al2O3 filled composite electrolytes. Temperature dependence of ionic conductivity shows a combination of Arrhenius and VTF (Vogel-Tamman-Fulcher) behavior.  相似文献   

3.
A new blend polymer electrolyte based on poly(vinyl alcohol) and polyacrylonitrile doped with lithium nitrate (LiNO3) has been prepared and characterized. The complexation of blend polymer (92.5 PVA:7.5 PAN) with LiNO3 has been studied using X-ray diffraction and Fourier transform infrared spectroscopy. Differential scanning calorimetry thermograms show a decrease in glass transition temperature with the addition of salt. The maximum ionic conductivity of the blend polymer electrolyte is 1.5 × 10?3 Scm?1 for 15 wt% LiNO3 doped–92.5 PVA:7.5 PAN electrolyte. The conductivity values obey Arrhenius equation. Ionic transference number measurement reveals that the conducting species are predominantly ions.  相似文献   

4.
The polymer electrolytes comprising of PVdF-HFP/PVAc/Mg(ClO4)2 as salt based polymer blend electrolytes derived from the addition of varying amounts of 1-ethyl – 3-methylimidazolium trifluoromethane sulfonate [EMITF], as dopant were synthesized in the form of films by solution-casting method. The XRD and FTIR patterns confirm the formation of an amorphous phase and also that complex formation between the polymers, salt and ionic liquid. The SEM images show that the polymer electrolyte exhibit a enormous pores, remarkably, the maximum ionic conductivity is obtained in the case of the typical polymer system I3 is found to be 9.122 × 10?4 Scm?1at 303 K.  相似文献   

5.
The study presents preparation of poly methyl methacrylate (PMMA) based nanocomposite gel polymer electrolytes consisting of, salt lithium perchlorate (LiClO4), plasticizer PC/DEC and different proportions of SiO2 nanofiber by solution casting process. The effect of the composition of the electrolytes on their ionic, mechanical and thermal characteristics was investigated. Morphology of the nanocomposite electrolyte films has been observed by scanning and transmission electron microscopes. Interactions among the constituents of the composite and structural changes of the base polymer were investigated by Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. The maximum conductivity i.e. 10?3 Scm?1 at room temperature is obtained with the electrolyte composition of 0.6(PMMA)-0.15(PC + DEC)-0.1LiClO4 (wt%) containing 10 wt% SiO2 nanofiber and the temperature dependent conductivity data of the electrolyte follows Vogel-Tamman-Fulcher (VTF) behavior.  相似文献   

6.
Proton-conducting polymer blend electrolytes based on PVA–PVP–NH4NO3 were prepared for different compositions by solution cast technique. The prepared films are investigated by different techniques. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR and laser Raman studies confirm the complex formation between the polymer and salt. DSC measurements show decrease in T g with increasing salt concentration. The ionic conductivity of the prepared polymer electrolyte was found by ac impedance spectroscopy analysis. The maximum ionic conductivity was found to be 1.41 × 10?3 S cm?1 at ambient temperature for the composition of 50PVA:50PVP:30 wt% NH4NO3 with low-activation energy 0.29 eV. The conductivity temperature plots are found to follow an Arrhenius nature. The dielectric behavior was analyzed using dielectric permittivity (ε*) and the relaxation frequency (τ) was calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer blend electrolyte, the primary proton battery with configuration Zn + ZnSO4·7H2O/50PVA:50PVP:30 wt% NH4NO3/PbO2 + V2O5 was fabricated and their discharge characteristics studied.  相似文献   

7.
Polymer gel electrolytes comprising a sulfur-based ionic liquid (IL), a lithium salt, and butyrolactone (GBL) as an additive hosted in PVdF-HFP matrix were prepared and characterized. The result shows that adding small amount of GBL to the polymer electrolytes can improve the cathodic stability of the electrolytes, which ensures the lithium plating/stripping in the redox process. Furthermore, cyclic voltammograms studies indicate that the polymer electrolytes have well reversible redox process. When the IL component reaches 75 wt%, the polymer electrolyte has higher ionic conductivity than the other samples and it is 6.32 × 10?4 S cm?1. The assembled batteries with the polymer electrolyte have better discharge capacity, and after 100 cycles, the discharge capacity of the battery still retains 148 mAh g?1.  相似文献   

8.
The Cu-doped titania (Ti0.95Cu0.05O2-δ) is studied here as a solid-state ionic conductor for its possible application in high temperature energy devices such as an electrolyte for SOFC. The sample in the powder form was obtained by solid state method using TiO2 and copper acetate by heating up to 1200 °C for 10 h. It was characterized by XRD, FT-IR, Raman, SEM/EDS, DRS-UV-Visible, photoluminescence, BET and ac-impedance techniques. The oxide ion conductivity (σt) values obtained from ac-impedance measurements showed a linear increase with temperature from 300 ? 700 °C. The σt values are similar to that of Ln-doped ceria, and the highest conductivity of 1.41 × 10?4 Scm?1 was recorded at 700°C. The activation energy for total conductivity was found to be 0.82 eV. The ionic and electronic transport numbers are 0.79 and 0.21, respectively. This study suggests the plausible use of rutile TiO2 based (low-cost and structurally stable) materials as electrolytes in SOFC.  相似文献   

9.
Two non-flammable electrolytes 1 M LiPF6 in sulfolane (TMS) + 5 wt% VC and 0.7 M lithium bis(trifluoromethanesulphonyl)imide (LiNTf2) in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulphonyl)imide (MePrPyrNTf2) + 10 wt% gamma-butyrolactone (GBL) were tested with Li4Ti5O12 (LTO) as highly promising anode material for application in lithium-ion batteries. The results were compared for the titanium anode in the classic electrolyte: 1 M LiPF6 in propylene carbonate + dimethyl carbonate (PC + DMC, 1:1). The performances of LTO/electrolyte/Li cell were tested using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge and scanning electron microscopy (SEM). SEM images of electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of solid-state interface formation. Good charge/discharge capacities and low capacity loss at medium C rates preliminary cycling was obtained for the Li4Ti5O12 anode. For LTO/1 M LiPF6 in PC + DMC/Li system, the best capacity was obtained at C/10 and C/3 (145 and 154 mAh g?1, respectively). In the case of a system working on the basis of a TMS solution (1 M LiPF6 in TMS + 5 wt% VC) the best value was obtained at a C/5 current and an average of more than 150 mAh g?1 (86 % of theoretical capacity). For the 0.7 M LiNTf2 in MePrPyrNTf2 + 10 wt% GBL electrolyte, the highest capacitance value (at C/20 current) of about 150 mAh g?1 was observed. The 1 M LiPF6 in TMS + 5 wt% VC and 0.7 M LiNTf2 in MePrPyrNTf2 + 10 wt% GBL electrolytes had a relatively broad thermal stability range and no decomposition peak was observed below 150 °C.  相似文献   

10.
Potassium ion-conducting polymer electrolytes based on poly (vinyl pyrrolidone) (PVP) complexed with KClO4 were prepared using a solution cast technique. These samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Differential Scanning Calorimetry (DSC), and impedance spectroscopy. The complexation of the salt with polymer was confirmed by FT-IR and XRD studies. The ionic conductivity was found to increase with increasing temperature and salt concentration. The highest ionic conductivity (0.91 × 10?5 S/cm) and low activation energy (0.29 eV) was obtained for the polymer complexed with 15 wt% KClO4 among all the compositions.  相似文献   

11.
The impedance of well-characterized KI-incorporated glucosyl carboxonium ion-based biopolymer crust electrolytes up to a maximum 2.7?wt% was measured using electrical impedance spectroscopy. Enhanced ionic conductivity of 2.3657?×?10?2?S?cm?1 on the addition of 2.7?wt% of KI was observed in contrast to earlier reported value for pure GCI of 4.5278?×?10?4?S?cm?1. This is attributed due to the increased concentration of KI in the system and is corroborated with increased ion density (n), mobility (µ), and diffusion coefficients (D). Dielectric and modulus study shows the capacitive nature of electrolyte. Fabricated dye-sensitized solar cell using pure glucosyl carboxonium ion crust and KI-incorporated glucosyl carboxonium ion crust shows the efficiency of 1.19% for pure and shows the efficiency of 2.14% for 2.6?wt% of KI in glucosyl carboxonium ion at 1 sun condition.  相似文献   

12.
Nanocomposite polymer electrolytes (NCPE) were prepared using nano polyethylene oxide PEO doped with Magnesium (Mg) salts. Gamma irradiation was utilized to improve the PEO‐Mg salts particle sizes. Consequently, Magnesium Oxide (MgO) nanoparticles were prepared by green synthesis and incorporated into PEO‐Mg salts to improve their properties toward magnesium battery electrolyte applications. The prepared samples were examined before and after exposures to the radiation doses. Dynamic light scattering (DLS) indicated the particles size of the synthesized nano polymer‐Mg salts and MgO nanoparticles. Fourier transform infra‐red (FTIR) spectroscopic measurements, transmission electron microscopy (TEM), electrical conductivity, electrochemical properties, and thermal stability of the samples were determined. FTIR indicated the interaction between PEO with Mg salts and MgO nanoparticles which confirmed the structure. The TEM results showed a spherical nanoparticles of MgO and a good dispersion of MgO in PEO matrix. It was found that the irradiation dose 70 kGy gave the best results for the nano polymer‐Mg salts (13 nm). The electrical conductivity (σ) evaluated for NCPE, was more than three orders of magnitude of pure PEO. The liquid NCPE of 20 mL MgO NPs at 100 kGy exhibited a maximum conductivity of 3.63 × 10–3 Scm?1 at room temperature. The increase in temperature caused a slight effect on conductivity, 4.85 × 10–3 Scm?1 at temperature 250°C, at the same concentration. While un‐irradiated sample of 30 mL MgO NPs (σ) reached to 3.8 × 10?3 Scm?1 then became 5.03 × 10?3 Scm?1 by increasing temperature. From the cyclic voltammetry results, the polymer electrolytes containing MgO filler, 20 and 30 mL, for irradiated and un‐irradiated samples, respectively exhibited wider electrochemical stability window than the others due to the appearance of Mg deposition/desolution peak in CV curve showed that magnesium effectively migrating through electrolytes. Thermogravimetric analysis (TGA) was enhanced by adding Mg salts electrolyte and also MgO nanoparticles to PEO. J. VINYL ADDIT. TECHNOL., 25:243–254, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
Poly(ethylene oxide) (PEO) 400-maleate-isophthalate resins have been prepared and LiCIO4 dissolved in the resins before crosslinking with 30% of styrene, vinylpyrrolidone or vinylpyridine. The DC conductivities of the resins were measured and found to increase in the order vinylpyridine 〈vinylpyrrolidone〉 styrene for the same [EO]/[Li+] ratio ( = 50). For the styrene system σ = 3 × 10?6Scm?1 at ambient temperatures and for the vinylpyridine system σ = 1 × 10?7 Scm?1. The Tgs of the system were also measured using dynamic mechanical thermal analysis and were found to be very close (257-260 K). The above sequence was therefore attributed to stronger site-binding of lithium ions at the more polar comonomers. An interpenetrating network (IPN) consisting of the styrene-polyester and incorporating 40% PEO 400 was also prepared with[EO]/[Li+]ratios of 20 and 50. These gave ambient temperature conductivities of 1 × 10?5 and 3 × 10?5 Scm?1, respectively.  相似文献   

14.
A solid polymer electrolyte based on lithium hydroxide (LiOH) added with polyethylene glycol and polyvinyl alcohol polymers was synthesized by solution casting. The structural variation with respect to loading wt% of LiOH reveals the semicrystalline property of polymer electrolyte. The differential scanning calorimetry data shows the onset of crystalline to amorphous transition, which occurs nearly to the melting peak, for higher salt content. The structural properties and cross-linking between polymer and salt were demonstrated by polarized optical microscopy. The polymer electrolytes were subjected to AC impedance analysis spectra for obtaining the ionic conductivity at different temperature. The charge carriers relax much faster for higher lithium salt concentration based polymer electrolyte and produces higher conductivity. The highest room temperature conductivity 2.63 × 10?5 S/cm is obtained for 8 wt% loading of lithium salt based polymer electrolyte, confirming their use in preparation of ion conducting devices.  相似文献   

15.
Plasticized solid polymer electrolytes (PSPEs) consisting of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50/50 wt%) based matrix with lithium tetrafluoroborate (LiBF4) as dopant ionic salt (10 wt%) and varied concentrations (x = 0, 5, 10 and 15 wt%) of ethylene carbonate (EC) as plasticizer have been prepared. Classical solution-cast (SC) and the ultrasonic assisted followed by microwave irradiated (US–MW) solution-cast methods have been used for the preparation of (PEO–PMMA)–LiBF4x wt% EC films, and the same have been hot–pressed to get their smooth surfaces. Dielectric relaxation spectroscopy (DRS) and X–ray diffraction (XRD) techniques have been employed to characterize the dielectric and electrical dispersions and the structural properties of the PSPE films, respectively. It has been observed that the ionic conductivity of these semicrystalline ion-dipolar complexes is governed by their dielectric permittivity and polymers chain segmental dynamics. The increase in ionic conductivity values with the increase of plasticizer concentration in the PSPEs also varies with the films’ preparation methods. The US–MW method prepared PSPE film containing 15 wt% EC has a maximum ionic conductivity (1.86 × 10?5 S cm?1) at room temperature, whereas, the films having low concentrations of EC exhibit the conductivity of the order of 10?6 S cm?1.  相似文献   

16.
《Ceramics International》2022,48(18):25949-25957
The design and regulation of the ion transport channels in the polymer electrolyte is an important means to improve the lithium ion transport behavior of the electrolyte. In this work, we for the first time combined the high ionic conductive inorganic ceramic electrolyte Li1.5Al0.5Ge1.5(PO4)3 (LAGP) with flexible polypropylene oxide (PPO) polymer electrolyte to synthesize a high-filling LAGP/PPO composite solid electrolyte film and regulated the ion transport channels from ‘Ceramics-in-Polymer’ mode to ‘Polymer-in-Ceramics' mode by optimizing the ratio of LAGP vs. PPO. The results reveal that when the LAGP content <40%, the electrolyte belongs to ‘LAGP-in-PPO’, and then changes to ‘PPO-in-LAGP’ when the LAGP content exceeds 40%. Compared with ‘LAGP-in-PPO’, the ‘PPO-in-LAGP’ shows better comprehensive properties, especially for the 75% LAGP-filled PPO electrolyte, the room-temperature ionic conductivity is as high as 3.46 × 10?4 Scm?1, the ion migration number and voltage stable window reach 0.83 and 4.78 V respectively. This high-filled composite electrolyte possesses high tensile stress of 40 MPa with a strain of 46% and withstands working environment up to 200 °C. The NCM622/Li solid-state battery composed of this electrolyte also presents good rate and cycle performances with a capacity retention of 80% after 230 cycles at 0.3C because of its high ion transport capability and good inhibition of lithium dendrites. This composite structural design is expected to develop high-performance solid-state electrolytes suitable for high-voltage solid-state lithium batteries.  相似文献   

17.
Synthesis and characterization of composite polymer electrolytes based on lithium bis(oxalato)borate (LiBOB) and a host matrix of nanoparticulate anatase dispersed in phase‐separated poly(vinylidenefluoride) (PVdF)‐poly(vinylchloride) (PVC) are described. Ethylene carbonate (EC) and diethyl carbonate (DEC) were used as plasticizers in the membranes, and nanoparticulate TiO2 (anatase) was used as the filler. The membranes were characterized by SEM, XRD, and a.c. impedance measurements. A membrane with 2.5 wt% filler exhibited a conductivity of 5.43 × 10?4 S.cm?1 at ambient temperature. Filler levels above 2.5 wt% increased the crystallinity of the membranes, rendering them less conducting. Activation energy and coherent length of the composite polymer electrolytes have also been calculated. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers.  相似文献   

18.
Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers were prepared by the electrospinning method and used as polymer electrolytes in dye-sensitized solar cells (DSSCs). The electrolyte uptake and ionic conductivity of electrospun PVDF-HFP nanofibers with different diameters changed significantly, regardless of the nanofiber thickness. The PVDF-HFP nanofibers prepared from a 15 wt% spinning solution showed high ionic conductivity (1.295 S/cm) and electrolyte uptake (947 %). DSSCs based on the 15 wt% PVDF-HFP nanofiber electrolyte showed an electron transit time of 6.34 × 10?3 s, electronic recombination time of 5.88 × 10?2 s, and conversion efficiency of 3.13 %. Thus, we concluded that the electrospun PVDF-HFP nanofibers can be used as polymer electrolytes in flexible DSSCs as well.  相似文献   

19.
Nanocomposites electrolytes consisting of La3+ and Zr4+ doped with ceria labelled as La0.2 Ce0.8 O2-δ (LDC), Zr0.2Ce0.8O2-δ (ZDC) and Zr0.2La0.2Ce0.6O2-δ (ZLDC) have been synthesized via a co-precipitation route. DC conductivity was studied with a four-probe method in the range of temperature 450–650 °C and maximum conductivity was found to be 0.81 × 10?2 S.cm?1 (LDC) > 0.32 × 10?2 S.cm?1 (ZLDC) > 0.15 × 10?2 S.cm?1 (ZDC) at a temperature of 650 °C, respectively. Further, electric behavior of doped and co-doped ceria electrolytes was investigated by A.C electrochemical impedance spectroscopy (frequency range ~ 0.1 Hz?4 MHz). The phase/structural identification of the material prepared was studied using X-ray diffraction and found ceria to possess a cubic fluorite structure. Scanning electron microscopy (SEM) was carried out to study its morphology and particle size (~ 90–120 nm). Thermal behavior on its change in weight and length with the temperature were studied by thermogravimetric analysis (TGA) and dilatometry respectively. Furthermore, thermal expansion coefficients (TECs) of prepared electrolytes are calculated and found as follows: 13.4 × 10?6 °C?1, 13.6 × 10?6 °C?1and 15.3 × 10?6 °C?1 for LDC, ZDC and ZLDC, respectively, in the temperature range 150–1150 °C.  相似文献   

20.
Concerning the safety problems of conventional Li-ion batteries with liquid electrolytes, it is crucial to develop reliable solid-state electrolytes with high ionic conductivity. Li1+xAlxTi2?x(PO4)3 (LATP, x = 0.3) is regarded as one of the most promising solid electrolytes due to its high ionic conductivity and excellent chemical stability to humidity.Herein, a new strategy is proposed for improving the sintering behavior and enhancing the ionic conductivity of LATP by using LiBO2 as the sintering aid via liquid phase sintering. The as-prepared sample LATP with homogeneous microstructure and high relative density of 97.1% was successfully synthesized, yielding high total ionic conductivity of 3.5 × 10?4 S cm?1 and low activation energy of 0.39 eV at room temperature. It was found that the addition of LiBO2 could effectively enhance the densification and increase the ionic conductivity of LATP electrolyte, proving an effective way to synthesis LATP ceramics by a simple and reliable route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号