首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival of bifidobacteria after spray-drying   总被引:8,自引:0,他引:8  
To investigate the survival of bifidobacteria after spray-drying, Bifidobacterium infantis CCRC 14633, B. infantis CCRC 14661, B. longum ATCC 15708, B. longum CCRC 14634 and B. longum B6 were first spray-dried with different carrier media including 10% (w/w) gelatin, gum arabic and soluble starch. B. infantis CCRC 14633 and B. longum were also determined in skim milk. It was found that survival of bifidobacteria after spray-drying varied with strains and is highly dependent on the carriers used. Among the test organisms, B. longum B6 exhibited the least sensitivity to spray-drying and showed the highest survival of ca. 82.6% after drying with skim milk. Comparisons of the effect of carrier concentrations revealed that spray-drying at 10% (w/w) gelatin, gum arabic or soluble starch resulted in the highest survival of bifidobacteria. In addition, among the various outlet-air temperatures tested, bifidobacteria showed the highest survival after drying at 50 degrees C. Elevation of outlet-air temperature caused increased inactivation of bifidobacteria. However, the inactivation caused by increased outlet-air temperature varied with the carrier used, with the greatest reduction observed using soluble starch and the least with skim milk.  相似文献   

2.
The objectives of this work were to: (1) contrast spray drying, freeze drying and freezing for large-scale preservation of B. linens, (2) determine the thermal resistance curves, and (3) measure the storage stability. When B. linens was freeze-dried and frozen in feed suspensions containing 3% (w/v) cell paste and 25% (w/w) total solids, survival was 100%. During spray drying, lethal thermal injury was the main cause of loss of viability. Accordingly, by extrapolation, 100% viability would be possible at an outlet-air temperature of 57°C. Spray-dried and freeze-dried cells were stable during storage at 4°C in the absence of oxygen and moisture.  相似文献   

3.
Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4 degrees C) and abuse (37.8 degrees C) temperatures. Samples stored at 4 degrees C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8 degrees C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus. Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8 degrees C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8 degrees C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4 degrees C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8 degrees C varies depending on the culture(s) used in cheese production.  相似文献   

4.
Bifidobacterium BB-12 was microencapsulated by spray drying using lactose-free milk, lactose-free milk and inulin, and lactose-free milk and oligofructose, resulting in powders 1, 2 and 3, respectively. The highest encapsulation yield (88.01%) and the highest bifidobacteria viability during 120 days of storage were noted for spray-dried powder 2. Spray-dried powders 1 and 3 show a higher tendency to yellow colour. After being submitted to in vitro-simulated gastrointestinal conditions, the best probiotic survival rate result was found for spray-dried powder 3 (87.59%). Therefore, spray-dried powders containing prebiotics were the most appropriate combinations for microencapsulation of Bifidobacterium BB-12 and maintenance of cell viability during storage and gastrointestinal system, showing great potential to be used in lactose-free dairy products.  相似文献   

5.
Lamb rennet pastes containing encapsulated Lactobacillus acidophilus and a mix of Bifidobacterium longum and Bifidobacterium lactis were produced for Pecorino cheese manufacture from Gentile di Puglia ewe milk. Cheeses were denoted as RP cheese when made with traditional rennet paste, RP-L cheese when made with rennet paste containing L. acidophilus culture, and RP-B cheese when made with rennet paste containing a mix of B. lactis and B. longum. Biochemical features of Pecorino cheese were studied at 1, 15, 30, 60, and 120 d of cheese ripening. The effect of encapsulation and bead addition to rennet acted on a different way on the viability of probiotic. Lactobacillus acidophilus retained its viability for 4 to 5 d and then showed a fast reduction; on the other hand, B. longum and B. lactis experienced kinetics characterized by an initial death slope, followed by a tail effect due to acquired resistance. At 1 d of ripening, the levels of L. acidophilus and bifidobacteria in cheese were the lowest, and then increased, reaching the highest levels after 30 d; such cell loads were maintained throughout the ripening for L. acidophilus, whereas bifidobacteria experienced a decrease of about 1 log cfu/g at the end of ripening. Enzymatic activities and biochemical features of cheeses were influenced by the type of rennet used for cheesemaking. Greater enzymatic activity was recorded in RP-L and RP-B cheese due to the presence of probiotic bacteria released from alginate beads. A positive correlation was found between enzymatic activities and water-soluble nitrogen and proteose-peptone in RP-B and RP-L cheeses; water-soluble nitrogen and proteose-peptone were the highest in RP-B. Principal component analysis distinguished RP-L from the other cheeses on the basis of the conjugated linoleic acid content, which was higher in the RP-L due to the ability of L. acidophilus to produce conjugated linoleic acid in the cheese matrix.  相似文献   

6.
Research and development projects concerning cheese industry in Argentina are described in this study. Regional strains of lactic acid bacteria were isolated from different ecological pockets and their taxonomic profiles were determined. Proteolytic and acid activity as well as diacetyl production were analyzed. Results obtained depended on the species and strains under consideration. The cell permeabilization using 20 to 40% ethanol improved the acid production by lactic acid bacteria. Freeze-drying was used for culture preservation. The optimal conditions for obtaining the highest survival rate were determined. Best results were obtained by using 0.75 M adonitol as a cryoprotectant. The rehydration conditions to be used depended on the bacterial species. Freeze-dried cultures showed good viability and activity up to 1 year of storage at 4 degrees C.  相似文献   

7.
Bifidobacteria cultures were incorporated into Cheddar cheeses to conduct a comparative analysis between the commercially available strain Bifidobacterium animalis ssp. lactis Bb-12 and the wild-type intestinal isolate, Bifidobacterium longum DJO10A. They were incorporated as starter adjuncts in separate vats and as a mixed culture, and survival through manufacturing and cheese ripening was assessed. For cheese using only Bb-12, the cells may have grown during cheese manufacture as 133% of the inoculum was incorporated into the cheese, resulting in 8.00 log cfu/g. Counts remained high during ripening showing less than 1 log decrease over a 12-mo period. For cheese using a mixed culture of Bb-12 and DJO10A, both strains were incorporated at much lower levels: 3.02 and 1.11%, respectively. This resulted in cheese with 6.00 and 5.04 log cfu/g for Bb-12 and DJO10A, respectively. Bifidobacteria survival rates were low, most likely due to the moisture of the cheese being below 38%. The Bb-12 demonstrated almost 100% viability during ripening. Numbers of DJO10A started to decline after 2 mo of ripening and dropped below the level of detection (2 log cfu/g) after 4.5 mo of ripening. Neither DJO10A nor Bb-12 fortified cheeses produced detectable amounts of organic acids during ripening other than lactic acid, indicating the lack of detectable metabolic contribution from bifidobacteria during cheese production and ripening such as production of acetic acid. To determine if sublethal stresses could improve the viability of DJO10A, 2 more vats were made, 1 with DJO10A exposed to sublethal acid, cold, and centrifugation stresses, and 1 exposed to none of these stresses. Although stress-primed DJO10A survived cheese manufacture better, as 72.8% were incorporated into the cheese compared with 41.1% of the unprimed, the statistical significance of this difference is unknown. In addition, the difference in moisture levels in the cheese cannot be excluded as influencing this difference. However, the rate of decline during ripening was similar for both. After 6 mo of ripening, cell counts in cheese were 4.68 and 4.24 log cfu/g for primed and unprimed cultures, respectively. These results suggest that whereas priming bifidobacteria with sublethal stresses before incorporation in a cheese fermentation may improve the number of viable cells that get incorporated into the cheese, it does not affect viability during cheese ripening.  相似文献   

8.
Hispánico cheese was manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639, bacteriocin-nonproducing L. lactis ssp. lactis INIA 437, or a combination of both strains, as starter cultures. Lactobacillus helveticus LH 92, a culture of high amino-peptidase activity sensitive to lacticin 481, was added to all vats. Milk inoculation with the bacteriocin producer promoted early lysis of Lb. helveticus cells in cheese. Cell-free aminopeptidase activity in cheese made with the 3 lactic cultures was 1.8 times the level reached in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 15 d of ripening. Proteolysis (as estimated by the o-phthaldialdehyde method) in cheese made with the 3 lactic cultures was twice as high, and the level of total free amino acids 2.4 times the level found in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 25 d of ripening. Hydrophobic and hydrophilic peptides and their ratio were at the lowest levels in cheese made with the 3 lactic cultures, which received the lowest scores for bitterness and the highest scores for taste quality.  相似文献   

9.
Acetobacter xylinum BRC5 was cultivated in a jar fermentor using glucose as the sole carbon source. Strain BRC5 oxidized almost all of the glucose to gluconic acid; thereafter, it biosynthesized cellulose by utilizing gluconic acid accumulated in the broth. The optimal pH for metabolizing glucose to gluconic acid was 4.0, while a pH of 5.5 was preferred for cell growth and cellulose production from the accumulated gluconic acid in the medium. Shifting the pH from 4.0 to 5.5 during the cellulose production phase in batch cultures improved cellulose production and reduced the total fermentation time, compared to batch cultures at constant pH. In constant fed-batch culture, 10 g/l of cellulose was obtained from 40 g/l of glucose, a yield which was approximately 2-fold higher than in batch culture with the same initial glucose concentration, even without control of the level of dissolved oxygen. The highest cellulose yield was obtained in fed-batch cultures in which the dissolved oxygen concentration was controlled at 10% saturation. Control of pH and dissolved oxygen to optimal levels was effective for improving the production rate and yield of cellulose, to achieve a high cellulose productivity of 0.3 g cellulose/l x h. Approximately 15 g/l of cellulose was considered to be the highest yield obtainable using conventional fermentors because the culture broth then became too viscous to allow satisfactory aeration.  相似文献   

10.
Freeze-dried commercial Lactobacillus rhamnosus GG (LGG) were encapsulated in an emulsion-based formulation stabilized by whey protein and resistant starch and either spray-dried or freeze-dried to produce probiotic microcapsules. There was no difference in loss of probiotics viability after spray drying or freeze drying. Particle size, morphology, moisture sorption, and water mobility of the powder microcapsules were examined. Particle size analysis and scanning electron microscopy showed that spray-dried LGG microcapsules (SDMC) were small spherical particles, whereas freeze-dried LGG microcapsules (FDMC) were larger nonspherical particles. Moisture sorption isotherms obtained using dynamic vapor sorption showed a slightly higher water uptake in spray-dried microcapsules. The effect of water mobility, as measured by nuclear magnetic resonance (NMR) spectroscopy, at various water activities (a(w) 0.32, 0.57, and 0.70) and probiotic viability during storage at 25 °C was also examined. Increasing the relative humidity of the environment at which the samples were stored caused an increase in water mobility and the rate of loss in viability. The viability data during storage indicated that SDMC had better storage stability compared to FDMC. Although more water was adsorbed for spray-dried than freeze-dried microcapsules, water mobility was similar for corresponding storage conditions because there was a stronger water-binding energy for spray-dried microcapsule. This possibly accounted for the improved survival of probiotics in spray-dried microcapsules.  相似文献   

11.
《Journal of dairy science》2017,100(9):6997-7006
Marajó cheese made with raw buffalo milk in the Amazon region of Brazil can be considered a good source of wild lactic acid bacteria strains with unexplored and promising characteristics. The aim of this study was to develop a potential probiotic starter culture for industrial applications using freeze drying and spray drying. A decrease in the survival rates of freeze-dried samples compared with spray-dried samples was noted. The spray-dried cultures remained approximately 109 cfu·g−1, whereas the freeze-dried samples showed 107 cfu·g−1 after 60 d of storage at 4°C. All of the spray-dried samples showed a greater ability to decrease the pH in 10% skim milk over 24 h compared with the freeze-dried samples. The spray-dried samples showed a greater resistance to acidic conditions and to the presence of bile salts. In addition, under heat stress conditions, reduction was under 2 log cycles in all samples. Although the survival rate was similar among the evaluated samples after drying, the technological performance for skim milk showed some differences. This study may direct further investigations into how to preserve lactic acid bacteria probiotics to produce spray-dried starters that have a high number of viable cells that can then be used for industrial applications in a cost-effective way.  相似文献   

12.
This study was undertaken to evaluate the effect of lamb rennet paste containing probiotic strains on proteolysis, lipolysis, and glycolysis of ovine cheese manufactured with starter cultures. Cheeses included control cheese made with rennet paste, cheese made with rennet paste containing Lactobacillus acidophilus culture (LA-5), and cheese made with rennet paste containing a mix of Bifidobacterium lactis (BB-12) and Bifidobacterium longum (BB-46). Cheeses were sampled at 1, 7, 15, and 30 d of ripening. Starter cultures coupled with probiotics strains contained in rennet paste affected the acidification and coagulation phases leading to the lowest pH in curd and cheese containing probiotics during ripening. As consequence, maturing cheese profiles were different among cheese treatments. Cheeses produced using rennet paste containing probiotics displayed higher percentages of αS1-I-casein fraction than traditional cheese up to 15 d of ripening. This result could be an outcome of the greater hydrolysis of α-casein fraction, attributed to higher activity of the residual chymosin. Further evidence for this trend is available in chromatograms of water-soluble nitrogen fractions, which indicated a more complex profile in cheeses made using lamb paste containing probiotics versus traditional cheese. Differences can be observed for the peaks eluted in the highly hydrophobic zone being higher in cheeses containing probiotics. The proteolytic activity of probiotic bacteria led to increased accumulation of free amino acids. Their concentrations in cheese made with rennet paste containing Lb. acidophilus culture and cheese made with rennet paste containing a mix of B. lactis and B. longum were approximately 2.5 and 3.0 times higher, respectively, than in traditional cheese. Principal component analysis showed a more intense lipolysis in terms of both free fatty acids and conjugated linoleic acid content in probiotic cheeses; in particular, the lipolytic pattern of cheeses containing Lb. acidophilus is distinguished from the other cheeses on the basis of highest content of health-promoting molecules. The metabolic activity of the cheese microflora was also monitored by measuring acetic, lactic, and citric acids during cheese ripening. Cheese acceptability was expressed for color, smell, taste, and texture perceived during cheese consumption. Use of probiotics in trial cheeses did not adversely affect preference or acceptability; in fact, panelists scored probiotic cheeses higher in preference over traditional cheese, albeit not significantly.  相似文献   

13.
The effects of the adjunct cultures Lactococcus lactis ssp. diacetylactis, Brevibacterium linens BL2, Lactobacillus helveticus LH212, and Lactobacillus reuteri ATCC 23272 on volatile free fatty acid production in reduced-fat Edam cheese were studied. Lipase activity evaluation using p-nitrophenyl fatty acid ester substrates indicated that L. lactis ssp. diacetylactis showed the highest activity among the 4 adjunct cultures. Full-fat and 33% reduced-fat control cheeses (no adjunct) were made along with 5 treatments of reduced-fat cheeses, which included individual, and a mixture of the adjunct cultures. Volatile free fatty acids of cheeses were analyzed using static headspace analysis with 4-bromofluorobenzene as an internal standard. Changes in volatile free fatty acid concentrations were found in headspace gas of cheeses after 3-and 6-mo ripening. Acetic acid was the most abundant acid detected throughout ripening. Full-fat cheese had the highest relative amount of propionic acid among the cheeses. Certain adjunct cultures had a definite role in lipolysis at particular times. Reduced-fat cheese with L. lactis ssp. diacetylactis at 3-mo showed the highest levels of butyric, isovaleric, n-valeric, iso-caproic, and n-caproic acid. Reduced-fat cheese with Lactobacillus reuteri at 6 mo produced the highest relative concentration of isocaproic, n-caproic, and heptanoic, and the highest relative concentration of total acids.  相似文献   

14.
15.
为探究温度对鱼源腐败希瓦氏菌碳源利用的影响,利用多孔平板技术获得5、15、25?℃和33?℃条件下其生长动态,采用修正的Gompertz方程,构建动力学模型,获取动力学参数,结合孔平均颜色变化率及利用面积,探究其碳源利用效果。结果表明,25?℃时最大比生长速率(μmax)最大,迟滞期(λ)最小,总体碳源利用能力和活性最强,15?℃时次之,5?℃时活性降至约25?℃的1/6,33?℃时最弱;5~25?℃范围内,温度和、呈现良好的线性关系。5~33?℃时糖类和羧酸类利用率较高,比例分别为30%、29%。糖类(糊精、D-麦芽糖、α-D-葡萄糖、D-阿拉伯醇、水苏糖)、羧酸类(L-苹果酸、L-乳酸、乙酰乙酸)、氨基酸类(L-丝氨酸、氨基乙酰-L-脯氨酸、L-天冬氨酸和L-谷氨酸)和胺/酰胺类、脂肪酸/脂类和其他类中(明胶、丙酮酸甲酯、吐温40、L-组胺)利用较好。通过对腐败希瓦氏菌碳源利用分析,通过对腐败希瓦氏菌碳源利用和动力学分析,可为深入其代谢活性与水产品营养相关性等提供理论依据。  相似文献   

16.
3-Methylbutanal is one of the primary substances that contribute to the nutty flavor in cheese. Lactococcus strains have been shown to have higher aminotransferase and α-keto acid decarboxylase activities compared with other microbes, indicating that they might form a higher amount of 3-methylbutanal by decarboxylation. Several dairy lactococcal strains have been successfully applied as adjunct cultures to increase the 3-methylbutanal content of cheese. Moreover, compared with dairy cultures, the nondairy lactococci are generally metabolically more diverse with more active AA-converting enzymes. Therefore, it might be appropriate to use nondairy lactococcal strains as adjunct cultures to enrich the 3-methylbutanal content of cheese. This study thereby aimed to select a nondairy Lactococcus strain that is highly productive of 3-methylbutanal, identify its biosynthetic pathway, and apply it to cheese manufacture. Twenty wild nondairy lactococci isolated from 5 kinds of Chinese traditional fermented products were identified using 16S rRNA sequence analysis and were found to belong to Lactococcus lactis ssp. lactis. The nondairy strains were then screened in vitro for their production of 3-methylbutanal and whether they met the criteria to become an adjunct culture for cheese. The L. lactis ssp. lactis F9, isolated from sour bamboo shoot, was selected because of its higher 3-methylbutanal production, suitable autolysis rate, and lower acid production. The enzymes involved in the catabolic pathway of leucine were then evaluated. Both α-keto acid decarboxylase (6.96 μmol/g per minute) and α-keto acid dehydrogenase (30.06 μmol/g per minute) activities were detected in nondairy L. lactis F9. Cheddar cheeses made with different F9 levels were ripened at 13°C and analyzed after 90 d by a combination of instrumental and sensory methods. The results showed that adding nondairy L. lactis F9 significantly increased 3-methylbutanal content and enhanced the nutty flavor of the cheese without impairing its textural properties. Thus, nondairy L. lactis F9 efficiently enhanced the biosynthesis of 3-methylbutanal in vitro and in manufactured cheese.  相似文献   

17.
Various culture conditions for the production of fermented whey presenting bifidogenic growth stimulator (BGS) activity were evaluated using Leuconostoc mesenteroides CJNU 0147 and Lactobacillus casei CJNU 0588. The BGS activity of fermented whey produced with mixed culture of Leu. mesenteroides CJNU 0147 and L. Casei CJNU 0588 was higher than those of single cultures. The optimal temperature for the production of the fermented whey was 20°C. The anaerobic culture conditions via nitrogen gas supply had no influence on the BGS activity of fermented whey. The BGS activity of the heat-treated fermented whey samples was slightly decreased by 7.63, 11.66, and 15.12% at 80, 100, and 121°C, respectively for 15 min. Pilot-scale (75 L) fermented whey was produced using the 2 freeze-dried cell powders of CJNU 0147 and CJNU 0588 and spray-dried. The spray-dried fermented whey presented BGS activity, indicating it can be used as a functional food material.  相似文献   

18.
A starter culture system that produced both acid and nisin at acceptable rates in milk for manufacture of Gouda cheese was developed using nisin Z-producing L. lactis subsp. lactis biovar. diacetylactis UL 719 (UL 719) and a commercial Flora Danica (FD) starter culture. Different compositions of mixed cultures (0, 0.2, 0.4, 0.6 or 0.8% UL 719 with 1.4% FD) were tested for acidification and nisin Z production in milk after 12 h incubation at 30 degrees C. The 0.6/1.4% combination, selected as the optimal mixture of starter cultures, acidified milk to a suitable pH and produced nisin Z at a high concentration of 512 IU/ml. With this optimal combination, FD numbers of citrate-fermenting and non-fermenting bacteria did not change compared with the control (1.4% FD). However, with 0.8% of L. lactis strain UL 719 and 1.4% of the FD starter culture, the numbers of citrate-fermenting and non-fermenting bacteria in fermented milk decreased compared with those obtained when milk was inoculated with 0.2, 0.4 or 0.6% of UL 719 added to 1.4% FD or control cultures (1.4% FD). Mixed starter culture ratios 0.6/1.4%, 0.4/1.4% and 0.5/1.4% (UL 719/FD) were used to manufacture nisin Z containing Gouda cheese which was ripened up to 45 weeks. The composition of control cheeses made with 1.4% FD, and nisin Z-containing Gouda cheeses were similar with respect to percent moisture, fat, salt and protein. During the ripening period, the cell counts observed were approximately two logs higher in cheese made with the 0.6/1.4% mixed starter culture than in control cheese. In experimental cheese produced with 0.6/1.4% (UL 719/FD) mixed starter culture, nisin activity increased from 256 IU/g at the end of manufacture to a maximum of 512 IU/g after 6 weeks of ripening; the levels then decreased to 128 and 32 IU/g after 27 and 45 weeks of ripening, respectively. In contrast, nisin Z was not detected in experimental cheeses made with 0.4/1.4% or 0.5/1.4% (UL 719/FD) mixed starters. Using an affinity purified anti-nisin polyclonal antibody, anti-rabbit gold-conjugate and transmission electron microscopy, nisin Z was found to be localized in the cheese matrix, in fat globules, in the casein phase and concentrated at the fat-casein interface. After 27 weeks of ripening, nisin Z was detected preferentially in the fat globules of the experimental cheese.  相似文献   

19.
Survival of Lactobacillus plantarum WCFS1 spray-dried and stored under different conditions was investigated using complementary methods. One method involved a cell membrane integrity viability-based determination, the other assessed cell growth behavior in a liquid medium by means of detection time or by conventional plating. Survival decreased below 95% when spray drying was carried out at higher outlet spray drying temperatures (Tout > 70 °C). However, the membrane integrity method provided higher residual viability values compared to the detection time and conventional plating. This suggests that loss of viability may be due to a combination of damage to intracellular components and cell membrane. Also during storage viability based on growth behavior declined faster and was more temperature dependent compared to the viability as determined by the membrane integrity method. Also here additional damage to intracellular components is expected responsible to loss of viability. Major conclusion is that one should not only rely on a cell-membrane integrity based method to assess survival during spray drying and storage of bacteria. Previous studies that did so most probably underestimated viability as critical damage to intracellular components was not assessed.  相似文献   

20.
The effect of different lactic acid bacteria cultures on the physicochemical and microbiological characteristics of brined black olives of Gemlik cultivar at low fermentation temperature was studied. Fermentation was carried out according to the traditional Gemlik method with modifications like low salt concentration and lactic starter addition. The brines with 7% salt concentration were inoculated with lactic acid bacteria ( Lactobacillus brevis, Leuconostoc cremoris and L. paramesenteroides ), which were previously isolated from olive fruits at low temperatures and a commercial strain of Lb. plantarum. Fermentation procedures were carried out at controlled temperatures (between 10–12C). Lactic acid bacteria survival was accompanied by yeast development, no Pseudomonas and Enterobacter species were detected in all treatments during fermentation. The highest total titratable acidity, lowest pH and least yeast growth were determined at the brines and fermentation products, which were inoculated with L. cremoris.

PRACTICAL APPLICATIONS


The use of suitable starter cultures is necessary to improve the microbiological control of the naturally black table olive process, help to standardize the fermentation, increase the lactic acid yield and accordingly provide the production of olives with high quality. The requirements mentioned for starter cultures include a rapid and predominant growth, homofermentative metabolism, tolerance to salt, acid and polyphenols, and few growth factor requirements. Especially at the regions where olives were picked later when environmental temperatures are lower, the use of a starter culture that has the ability to grow at low temperatures may be necessary. Use of such starter cultures may help to increase acidification, to control some types of spoilage and to shorten the fermentation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号