首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Airborne particulate matter (PM2.5 and PM10) concentrations were measured in Zonguldak, Turkey from January to December 2007, using dichotomous Partisol 2025 sampler. Collected particulate matter was analyzed for 14 selected polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection (HPLC-FL). The seasonal variations of PM2.5 and PM10 concentrations were investigated together with their relationships with meteorological parameters. The maximum daily concentrations of PM2.5 and PM10 reached 83.3 μg m−3 and 116.7 μg m−3 in winter, whereas in summer, they reached 32.4 μg m−3 and 66.7 μg m−3, respectively. Total concentration of PM10-associated PAHs reached 492.4 ng m−3 in winter and 26.0 ng m−3 in summer times. The multiple regression analysis was performed to predict total PM2.5- and PM10-associated PAHs and benzo(a)pyrene-equivalent (BaPE) concentrations with respect to meteorological parameters and particulate mass concentrations with the determination coefficients (R2) of 0.811, 0.805 and 0.778, respectively. The measured mean values of concentrations of total PM2.5- and PM10-associated PAHs were found to be 88.4 ng m−3 and 93.7 ng m−3 while their predicted mean values were found to be 92.5 ng m−3 and 98.2 ng m−3, respectively. In addition, observed and predicted mean concentration values of PM2.5-BaPE were found to be 14.1 ng m−3 and 14.6 ng m−3. The close annual mean concentrations of measured and predicted total particulate related PAHs imply that the models can be reliably used for future predictions of particulate related PAHs in urban atmospheres especially where fossil fuels are mainly used for heating.  相似文献   

2.
Experimental data of the local heat transfer coeffcient of flow boiling ammonia in dependence of vapor fraction, mass flux and local heat flux is presented. Two horizontal test sections of 450 mm length and an inner diameter of 10 mm have been used, one being a plain tube, one being a spirally low finned tube. A constant wall temperature boundary has been aimed for the test section by heating with a fluid condensing on the tube outside. Local heat transfer coeffcients and pressure drops have been measured in the range −40 < Tsat < 4°C, 0 < x< 0.9, 50 < < 150 kg/m2 s and 2 < ΔTw < 15 K with resulting heat fluxes of 17 < < 75 kW/m2. The vapor quality is denoted as x, is the mass flux and ΔTw the wall superheat. The measured data is carefully evaluated using a finite element model of the tube with regard to the circumferential heat flow distribution. The smooth tube results are compared with recently published data and the correlation from Zürcher (Zürcher, O., Thome, J.R., Favrat, D. Evaporation of ammonia in a smooth horizontal tube: heat transfer measurements and predictions. Journal of Heat Transfer, 1999;121:89–101), and with the correlations of Steiner (Steiner D. Strömungssieden gesättigter Flüssigkeiten. VDI-Wärmeatlas, vol. 8. VDI-Verlag, 1997) and Kattan (Kattan N, Thome JR, Favrat D. Flow boiling in horizontal tubes: part 3 — development of a new heat transfer model based on flow pattern. Transactions of the ASME, 1998;120). The results of the low finned tube are not matched by any known correlation.  相似文献   

3.
The multiphase equilibration technique for the determination of the equilibrium angles that develop at the interphase boundaries of a solid–liquid–vapor system, has been used to calculate the surface and interfacial energies in polycrystalline CeO2 and CeO2/Cu system in argon atmosphere at the temperature range 1473–1773 K. Linear temperature functions were obtained by extrapolation, for the surface energy γsv (J/m2) = 2.465–0.563 × 10−3 T and the grain-boundary energy γss (J/m2) = 1.687–0.391 × 10−3 T of the ceramic, as well as for the interfacial energy γsl (J/m2) = 2.623–1.389 × 10−3(T −1356 K) of the CeO2/Cu system. Grain-boundary grooving studied on polished surfaces of CeO2 annealed in argon atmosphere at the same temperature range has shown that surface diffusion was the dominant mechanism for the mass transport. The surface diffusion coefficient can be expressed according to the equation Ds (m2/s) = 3.82 × 10−4 exp(−308,250/RT).  相似文献   

4.
Thermophysical properties of equilibrium and supercooled liquid iridium were measured using noncontact diagnostic techniques in an electrostatic levitator. Over the 2300–3000 K temperature range, the density can be expressed as ρ (T)=19.5×103 − 0.85(TTm) (kg·m−3) with Tm=2719 K. The volume expansion coefficient is given by 4.4 × 10−5 K−1. In addition, the surface tension can be expressed as γ (T)=2.23 × 103 − 0.17(TTm)(10−3N·m−1) over the 2373–2833 K span and the viscosity as η(T)=1.85 exp [3.0× 104/(RT)](10−3Pa·s) over the same temperature range.  相似文献   

5.
The introduction of chlorine-free refrigerants to the market requires experimental investigations of their behaviour in heat pumps and refrigerators. One particular area of interest is the effect of the new oils on the heat transfer in evaporators and condensers. Oil can either increase or decrease the heat transfer coefficient. This paper presents the results from an experimental investigation of the effect of three different ester-based oils on the heat transfer of HFC134a in a horizontal evaporator. The tests were carried out at heat fluxes between 2 and 8 kW m−2 (corresponding to mass fluxes between approximately 40 and 170 kg s−1 m−2). The evaporation temperature was varied from−10 to +10°C. The global oil concentration ranged from 0 to 4.5 mass percentage based on the total liquid flow. The heat transfer coefficient decreased in most of the cases. The results indicate that the decrease seems to depend on the viscosity of the oil. The decrease can fairly well be estimated with the correlation for pure refrigerants by Shah if the viscosity of the mixture is used in the calculations. The data for the oil-contaminated refrigerant also agree well with data for pure refrigerants in a plot of αtplo* versus the inverse Martinelli-Lockhart parameter when αlo* is calculated with a modified Dittus-Boelter correlation and the mixture viscosity is used in the calculations. The heat transfer is found to increase when introducing oil in the special cases where the flow rate is low and the viscosity is low (oil A, 2 and 4 kW m−2 oil B, 6kW m−2 at +10°C). This is most likely due to surface tension effects. It has been suggested that the increased surface tension leads to a better tube wetting and thus an increased heat transfer.  相似文献   

6.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

7.
Silver was reclaimed from silver-plating wastewater by using a pulsed electric field (PEF) combined with static cylinder electrodes (SCE). The conditions that produced the maximal silver recovery rate (RRAg) (99%) were as follows: average retention time of 10 min, interelectrode gap of 50 mm, solution pH of 9.0, temperature of 45 °C, initial Ag(I) concentration of 1000 mg L−1, PEF pulse frequency of 1200 Hz, current density of 5.0 A m−2 and a pulse duty cycle of 60%. Compared with the conventional direct current (DC) technology, the PEF process exhibited improvements in the silver recovery rate (RRAg), total energy consumption (TEC) and physical properties of the silver deposits, especially for low Ag(I) concentrations, for example, from 500 to 1000 mg L−1. For an initial Ag(I) concentration of 500 mg L−1, the PEF process produced an RRAg of up to 99%, and the TEC was 4.56 kWh (kg Ag)−1. In comparison, the RRAg and TEC were 90% and 5.66 kWh (kg Ag)−1, respectively, in the DC process. The results of SEM observation and XRD analysis indicated that the silver deposits formed by the PEF process were smaller, denser, and of a higher purity than those produced by the DC process. Therefore, the presented method was effective for reclaiming silver from silver-plating wastewater.  相似文献   

8.
J.L. Cui  H.F. Xue  W.J. Xiu 《Materials Letters》2006,60(29-30):3669-3672
The p-type pseudo-binary AgxBi0.5Sb1.5−xTe3 (x = 0.05–0.4) alloys were prepared by cold pressing. The thermal conductivities (κ) were calculated from the values of heat capacities, densities and thermal diffusivities measured, and range approximately from 0.66 to 0.56 (W K− 1 m− 1) for the AgxBi0.5Sb1.5−xTe3 alloy with molar fraction x being 0.4. Combining with the electrical properties obtained in the previous study, the maximum dimensionless figure of merit ZT of 1.1 was obtained at the temperature of 558 K.  相似文献   

9.
We have fabricated and measured a high-capacity superconducting current lead composed of a Y1Ba2Cu3O7–x cylinder, 20 cm long and 0.9 cm2 cross section. A steady-state, d.c., critical current of 225 A at a temperature of 77 K was measured in this sample, using a voltage criterion of 2×10–7 V/cm (p = 8×10–10 ohm-cm). This current was limited by the currentinduced, self magnetic field. To our knowledge this is the largest d.c. critical current so far reported in a Y1Ba2Cu3O7–x sample and demonstrates the possibility of using hightemperature superconducting HTS materials for current leads to low-temperature superconducting LTS magnets or in power distribution systems.  相似文献   

10.
Evaporation heat transfer experiments for two refrigerants, R-407C and R-22, mixed with polyol ester and mineral oils were performed in straight and U-bend sections of a microfin tube. Experimental parameters include an oil concentration varied from 0 to 5%, an inlet quality varied from 0.1 to 0.5, two mass fluxes of 219 and 400 kg m−2s−1 and two heat fluxes of 10 and 20 kW m−2. Pressure drop in the test section increased by approximately 20% as the oil concentration increased from 0 to 5%. Enhancement factors decreased as oil concentration increased under inlet quality of 0.5, mass flux of 219 kg m−2 s−1, and heat flux of 10 kW m−2, whereas they increased under inlet quality of 0.1, mass flux of 400 kg m−2 s−1, and heat flux of 20 kW m−2. The local heat transfer coefficient at the outside curvature of an U-bend was larger than that at the inside curvature of a U-bend, and the maximum value occurred at the 90° position of the U-bend. The heat transfer coefficient was larger in a region of 30 tube diameter length at the second straight section than that at the first straight section.  相似文献   

11.
The charge carrier mobility of green phosphorescent emissive layers, tris(2-phenylpyridine) iridium [Ir(ppy)3]-doped 4,4'-N,N'-dicarbazole-biphenyl (CBP) thin films, has been determined using impedance spectroscopy (IS) measurements. The theoretical basis of mobility measurement by IS rests on a theory for single-injection space-charge limited current. The hole mobilities of the Ir(ppy)3-doped CBP thin films were measured to be 10− 10–10− 8 cm2V− 1 s− 1 in the 2–7 wt.% Ir(ppy)3-doped CBP from the frequency dependence of both conductance and capacitance. These hole mobility values are much lower than those of the undoped CBP thin films (~ 10− 3 cm2V− 1 s− 1) because the Ir(ppy)3 molecules act as trapping centers in the CBP host matrix. These mobility measurements in the Ir(ppy)3-doped CBP thin films provide insight into the hole injection process.  相似文献   

12.
We have taken advantage of congruent melting behavior of the nonlinear rare-earth oxoborate Ca4REO(BO3)3 family to perfect a process of collective fabrication of self-frequency doubling microchip laser based on Nd:GdCOB (Ca4Gd1−xNdxO(BO3)3) crystals. The process goes from Czochralski boule to 1 × 3 mm2 chips perfectly oriented (better than 0.1°) to the phase matching direction (θ=90°, φ=46°) in the XY principal plane, with dielectric mirrors directly deposited on both faces of the chips. 20 mW of self-frequency doubling output power at 530 nm was performed under 800 mW of diode laser as incident pump power at 812 nm. In addition, new compositions from the solid solution Ca4Gd1−xYxO(BO3)3 (Gd1−xYxCOB) (x=0.13, 0.16, 0.44) have been grown by the Czochralski pulling method, in order to achieve noncritical phase matching (NCPM) second harmonic generation of 4F3/2 → 4I9/2 Nd3+ doped laser hosts. Three types of laser wavelengths have been chosen: Nd:YAP (YAlO3) at 930 nm, Nd:YAG (Y3Al5O12) at 946 nm, and Nd:ASL (NdySr1−x LaxyMgx Al12−xO19) at 900 nm. Angular acceptance measurements of these three types of compositions present very large values, compared to pure GdCOB or YCOB oriented in critical phase matching configurations.  相似文献   

13.
This study was carried out to investigate the adsorption equilibrium and kinetics of a pesticide of the uracil group on powdered activated carbon (PAC). The experiments were conducted at a wide range of initial pesticide concentrations (5 μg L−1 to 500 μg L−1 at pH 7.8), corresponding to equilibrium concentrations of less than 0.1 μg L−1 for the weakest, which is compatible with the tolerance limits of drinking water. Such a very broad range of initial solute concentrations resulting powdered activated carbon (PAC) concentrations (0.1–5 mg L−1) is the main particularity of our study. The application of several monosolute equilibrium models (two, three or more parameters) has generally shown that Bromacil adsorption is probably effective on two types of sites. High reactivity sites (KL  103 L mg−1) which are 10–20 less present in a carbon surface than lower reactivity sites (KL  10 L mg−1), according to the qm values calculated by two- or three-parameter models. The maximum capacity of the studied powdered activated carbon (PAC), corresponding to monolayer adsorption, compared to the Bromacil molecule surface, would be between 170 mg g−1 and 190 mg g−1. This theoretical value is very close to the experimental qm values obtained when using linearized forms of Langmuir, Tóth and Fritz–Schluender models.  相似文献   

14.
Perovskite-type oxides BaCe0.90Sm0.10O3−δ (BCS) and BaCe0.80Gd0.10Sm0.10O3−δ (BCGS) were synthesized by the sol–gel method and characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Using the sintered samples as solid electrolytes and silver–palladium alloy as electrodes, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in a solid-state proton-conducting cell reactor. The maximum rate of production of ammonia was 5.82×10−9 mol s−1 cm−2.  相似文献   

15.
An updated version of the Kattan–Thome–Favrat flow pattern based, flow boiling heat transfer model for horizontal tubes has been developed specifically for CO2. Because CO2 has a low critical temperature and hence high evaporating pressures compared to our previous database, it was found necessary to first correct the nucleate pool boiling correlation to better describe CO2 at high reduced pressures and secondly to include a boiling suppression factor on the nucleate boiling heat transfer coefficient to capture the trends in the flow boiling data. The new method predicts 73% of the CO2 database (404 data points) to within ±20% and 86% to within ±30% over the vapor quality range of 2–91%. The database covers five tube diameters from 0.79 to 10.06 mm, mass velocities from 85 to 1440 kg m−2 s−1, heat fluxes from 5 to 36 kW m−2, saturation temperatures from −25 °C to +25 °C and saturation pressures from 1.7 to 6.4 MPa (reduced pressures up to 0.87).  相似文献   

16.
B. Baudouy   《低温学》2003,43(12):667-672
We have determined simultaneously the Kapitza resistance, RK, and the thermal conductivity, κ, of Kapton HN sheets at superfluid helium temperature in the range of 1.4–2.0 K. Five sheets of Kapton with varying thickness from 14 to 130 μm, have been tested. Steady-state measurement of the temperature difference across each sheet as a function of heat flux is achieved. For small temperature difference (10–30 mK) and heat flux density smaller than 30 W m−2, the total thermal resistance of the sheet is determined as a function of sheet thickness and bath temperature. Our method determines with good accuracy the Kapitza resistance, RK=(10540±444)T−3×10−6 K m2 W−1, and the thermal conductivity, κ=[(2.28±0.54)+(2.40±0.32)×T]×10−3 W m−1 K−1. Result obtained for the thermal conductivity is in good agreement with data found in literature and the Kapitza resistance’s evolution with temperature follows the theoretical cubic law.  相似文献   

17.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

18.
This study proposes a state-dependent maintenance policy Ri,j(T,N,α) for a multi-state continuous-time Markovian deteriorating system subject to aging and fatal shocks and with states 0 (new state) <1<2<…<L (failed-state). Under Ri,j(T,N,α), the system is inspected at each kT for k=1,2,3… to identify the current state as, say a, and then do-nothing, repair and replacement are taken immediately according to 0≤ai−1, iaj−1 and jaL−1, respectively in case i<j. Additionally, the replacement is carried out whenever L occurs due to fatal shocks. This policy includes numerous maintenance policies in the literature as special cases and can be applied quite generally. We then try to determine the optimal i*, j* and T* such that the expected long-run cost rate is minimized. A numerical example is given to evaluate the performance of the policy.  相似文献   

19.
This paper reports our recent progresses in the development of Bi2Sr2Ca1Cu2O x /Ag tape conductors for the applications of magnetic field generation in liquid helium or around 20 K, using a refrigerator. We have carried out extensive work to optimize the processing parameters, investigating the relationship between the microstructure and transportJ c. We have found that the partial melting in oxygen atmosphere is effective to have large transportJ c with good reproducibility. The pre-annealing and intermediate rolling (PAIR) process has been successfully applied to the multilayer conductors to improve the grain alignment and transportJ c. TheJ c of 5×105A/cm2 at 4·2 K and 10 T has been achieved, which is the highest value reported so far. Two magnets fabricated by using different types of Bi-2212/Ag conductors were tested. One is a magnet designed as an insert magnet for a 18 T-class large bore Nb-Ti/Nb3Sn superconducting magnet. The conductor of this magnet was multifilamentary tape processed by powder-in-tube method. TheI c was 98 A in the backup field of 18 T, which generated the self field of 1·79 T. A large pancake coil was fabricated with multilayer conductor and tested under the operation of cryocooler system. The coil was stably operated up to theJ c of the coil at the temperatures below 30 K.  相似文献   

20.
An experimental investigation of two-phase flow mechanisms during condensation of refrigerant R134a in six small diameter round (4.91 mm), square (Dh=4 mm, α=1), and rectangular (4×6 and 6×4 mm: Dh=4.8 mm, α=0.67 and 1.5; 2×4 and 4×2 mm: Dh=2.67 mm, α =0.5 and 2) was conducted. Unique experimental techniques and test sections were developed to enable the documentation of the flow mechanisms during phase change. For each tube under consideration, flow mechanisms were recorded over the entire range of qualities for five different refrigerant mass fluxes between 150 and 750 kg m−2 s−1. The flow mechanisms were categorized into four different flow regimes: intermittent flow, wavy flow, annular flow, and dispersed flow. In addition, the large amount of data enabled the delineation of several different flow patterns within each flow regime, which provides a clearer understanding of the different modes of two-phase flow. Transition lines between the respective flow patterns and regimes on these maps were established based on the experimental data. It was found that for similar hydraulic diameters, flow regime transitions are not very strongly dependent on tube shape or aspect ratio. These maps and the transition lines can be used to predict the particular flow pattern or regime that will be established for a given mass flux, quality and tube geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号