共查询到20条相似文献,搜索用时 15 毫秒
1.
This article addresses the filtering design problem for discrete‐time Markov jump linear systems (MJLS) under the assumption that the transition probabilities are not completely known. We present the methods to determine ??2‐ and ??∞‐norm bounded filters for MJLS whose transition probability matrices have uncertainties in a convex polytope and establish an equivalence with the ones with partly unknown elements. The proposed design, based on linear matrix inequalities, allows different assumptions on Markov mode availability to the filter and on system parameter uncertainties to be taken into account. Under mode‐dependent assumption and internal model knowledge, observer‐based filters can be obtained and it is shown theoretically that our method outperforms some available ones in the literature to date. Numerical examples illustrate this claim. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
This paper presents a steady‐state robust state estimator for a class of uncertain discrete‐time linear systems with norm‐bounded uncertainty. It is shown that if the system satisfies some particular structural conditions and if the uncertainty has a specific structure, the gain of the robust estimator (which assures a guaranteed cost) can be calculated using a formula only involving the original system matrices. Among the conditions the system has to satisfy, the strongest one relies on a minimum phase argument. It is also shown that under the assumptions considered, the robust estimator is in fact the Kalman filter for the nominal system. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
3.
In this paper, new approaches regarding H2 guaranteed cost stability analysis and controller synthesis problems for a class of discrete‐time fuzzy systems with uncertainties are investigated. The state‐space Takagi‐Sugeno fuzzy model with norm‐bounded parameter uncertainties is adopted. Based on poly‐quadratic Lyapunov functions, sufficient conditions for the existence of the robust H2 fuzzy controller can be obtained in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design a suboptimal fuzzy controller which minimizes the upper bound on the quadratic cost function. The effectiveness of the proposed design approach is illustrated by two examples. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
4.
This paper is concerned with the problems of robust stochastic stabilization and robust H∞ control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H∞ control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
A partially delay‐dependent and disordered controller design for discrete‐time delayed systems 下载免费PDF全文
This paper considers the stabilization problem for a class of discrete‐time delayed systems by exploiting a partially delay‐dependent controller whose gains suffer a disordering phenomenon simultaneously. Two stochastic variables are used to describe the partially delay‐dependent and disordering properties, which are not independent, and referred to the original operation modes here. By introducing an augmented Markov chain, the corresponding closed‐loop system is transformed into a Markovian jump system with four new operation modes (NOMs). Based on the proposed model, a kind of controller depending on NOMs is firstly proposed with linear matrix inequalities forms. Moreover, without designing a controller containing NOMs directly, another kind of stabilizing controller referring to one depending on original operation modes is developed, which is composed of a series of NOM‐dependent controllers and satisfies a minimum variance approximation. Finally, two numerical examples are used to demonstrate the utility and superiority of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
H ∞ observer design for uncertain nonlinear discrete‐time systems with time‐delay: LMI optimization approach 下载免费PDF全文
We present a robust H ∞ observer for a class of nonlinear discrete‐time systems. The class under study includes an unknown time‐varying delay limited by upper and lower bounds, as well as time‐varying parametric uncertainties. We design a nonlinear H ∞ observer, by using the upper and lower bounds of the delay, that guarantees asymptotic stability of the estimation error dynamics and is also robust against time‐varying parametric uncertainties. The described problem is converted to a standard optimization problem, which can be solved in terms of linear matrix inequalities (LMIs). Then, we expand the problem to a multi‐objective optimization problem in which the maximum admissible Lipschitz constant and the minimum disturbance attenuation level are the problem objectives. Finally, the proposed observer is illustrated with two examples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
In this paper we consider a linear, discrete‐time system depending multi‐affinely on uncertain, real time‐varying parameters. A new sufficient condition for the stability of this class of systems, in terms of a feasibility problem involving linear matrix inequalities (LMIs), is obtained under the hypothesis that a bound on the rate of variation of the parameters is known. This condition, obtained by the aid of parameter dependent Lyapunov functions, obviously turns out to be less restrictive than that one obtained via the classical quadratic stability (QS) approach, which guarantees stability in presence of arbitrary time‐varying parameters. An important point is that the methodology proposed in this paper may result in being less conservative than the classical QS approach even in the absence of an explicit bound on the parameters rate of variation. Concerning the synthesis context, the design of a gain scheduled compensator based on the above approach is also proposed. It is shown that, if a suitable LMI problem is feasible, the solution of such problem allows to design an output feedback gain scheduled dynamic compensator in a controller‐observer form stabilizing the class of systems which is dealt with. The stability conditions are then extended to take into account L2 performance requirements. Some numerical examples are carried out to show the effectiveness and to investigate the computational burden required by the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
This paper investigates robust consensus for multi‐agent systems with discrete‐time dynamics affected by uncertainty. In particular, the paper considers multi‐agent systems with single and double integrators, where the weighted adjacency matrix is a polynomial function of uncertain parameters constrained into a semialgebraic set. Firstly, necessary and sufficient conditions are provided for robust consensus based on the existence of a Lyapunov function polynomially dependent on the uncertainty. In particular, an upper bound on the degree required for achieving necessity is provided. Secondly, a necessary and sufficient condition is provided for robust consensus with single integrator and nonnegative weighted adjacency matrices based on the zeros of a polynomial. Lastly, it is shown how these conditions can be investigated through convex programming by exploiting linear matrix inequalities and sums of squares of polynomials. Some numerical examples illustrate the proposed results. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Quadratic stabilizability and H∞ control of linear discrete‐time stochastic uncertain systems 下载免费PDF全文
This paper considers quadratic stabilizability and H∞ feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H∞ state and output feedback H∞ controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H∞ controllable. Sufficient conditions for the existence of the desired robust H∞ controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results. 相似文献
10.
This paper presents an algorithm for the computation of full‐complexity polytopic robust control invariant (RCI) sets, and the corresponding linear state‐feedback control law. The proposed scheme can be applied for linear discrete‐time systems subject to additive disturbances and structured norm‐bounded or polytopic uncertainties. Output, initial condition, and performance constraints are considered. Arbitrary complexity of the invariant polytope is allowed to enable less conservative inner/outer approximations to the RCI sets whereas the RCI set is assumed to be symmetric around the origin. The nonlinearities associated with the computation of such an RCI set structure are overcome through the application of Farkas' theorem and a corollary of the elimination lemma to obtain an initial polytopic RCI set, which is guaranteed to exist under certain conditions. A Newton‐like update, which is recursively feasible, is then proposed to yield desirable large/small volume RCI sets. 相似文献
11.
Robust state‐feedback control of stochastic state‐multiplicative discrete‐time linear switched systems with dwell time 下载免费PDF全文
Linear discrete‐time switched stochastic systems are considered, where the problems of mean square stability, stochastic l2‐gain and state‐feedback control design are treated and solved. Solutions are obtained for both nominal and polytopic‐type uncertain systems. In all these problems, the switching obeys a dwell time constraint. In our solution, to each subsystem of the switched system, a Lyapunov function is assigned that is nonincreasing at the switching instants. The latter function is allowed to vary piecewise linearly, starting at the end of the previous switch instant, and it becomes time invariant after the dwell. In order to guarantee asymptotic stability, we require the Lyapunov function to be negative between consecutive switchings. We thus obtain Linear Matrix Inequalities conditions. Based on the solution of the stochastic l2‐gain problem, we derive a solution to the state‐feedback control design, where we treat a variety of special cases. Being affine in the system matrices, all the aforementioned solutions are extended to the uncertain polytopic case. The proposed theory is demonstrated by a practical example taken from the field of flight control. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Robustness analysis of uncertain discrete‐time systems with dissipation inequalities and integral quadratic constraints 下载免费PDF全文
This paper presents a connection between dissipation inequalities and integral quadratic constraints (IQCs) for robustness analysis of uncertain discrete‐time systems. Traditional IQC results derived from homotopy methods emphasize an operator‐theoretic input–output viewpoint. In contrast, the dissipativity‐based IQC approach explicitly incorporates the internal states of the uncertain system, thus providing a more direct procedure to analyze uniform stability with non‐zero initial states. The standard dissipation inequality requires a non‐negative definite storage function and ‘hard’ IQCs. The term ‘hard’ means that the IQCs must hold over all finite time horizons. This paper presents a modified dissipation inequality that requires neither non‐negative definite storage functions nor hard IQCs. This approach leads to linear matrix inequality conditions that can provide less conservative results in terms of robustness analysis. The proof relies on a key J‐spectral factorization lemma for IQC multipliers. A simple numerical example is provided to demonstrate the utility of the modified dissipation inequality. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
14.
The problem of robust H2 estimation of a combination of states of a stationary linear system with time delays is considered. Since the problem is infinite dimensional in nature, an attempt is being made to develop finite dimensional methods that will guarantee a preassigned estimation accuracy. The approach of minimizing the trace of a matrix that overbounds the exact covariance of the estimation error is considered. Sufficient conditions are given in the form of linear matrix inequalities (LMIs). The results are illustrated by a numerical example. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
15.
The problem of delay‐dependent robust stabilization for uncertain singular discrete‐time systems with Markovian jumping parameters and time‐varying delay is investigated. In terms of free‐weighting‐matrix approach and linear matrix inequalities, a delay‐dependent condition is presented to ensure a singular discrete‐time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state‐feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Y. K. Foo 《国际强度与非线性控制杂志
》2009,19(9):1065-1075
》2009,19(9):1065-1075
We consider the problem of finite‐horizon discrete‐time H∞ filtering with uncertain initial state condition and establish the relationship between the conventional γ‐performance bound and a recently proposed performance measure. A sub‐optimal but more efficient approach to computing the filter for the new performance measure is also derived. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
This paper studies the problem of Kalman filter design for uncertain systems. The system under consideration is subjected to time-varying norm-bounded parameter uncertainties in both the state and measurement matrices. The problem we address is the design of a state estimator such that the covariance of the estimation error is guaranteed to be within a certain bound for all admissible uncertainties. A Riccati equation approach is proposed to solve the above problem. Furthermore, a suboptimal covariance upper bound can be computed by a convex optimization. 相似文献
18.
This paper is concerned with the problem of the fault detection filter design for discrete‐time switched linear systems with average dwell‐time. The designed fault detection filters are also switched systems, which are assumed to be asynchronously switched with the original switched systems. Improved results on the weighted l2 performance and the H ? performance are first given, and the multiple Lyaounov‐like functions during matched period and unmatched period for the running time of one subsystem are used. By the aid of multiple Lyapunov‐like functions combined with Projection Lemma, the FD filters are designed such that the augmented systems under asynchronous switching are exponentially stable, and the residual signal generated by the filters achieves the weighted l2‐gain for disturbances and guarantees the H ? performance for faults. Sufficient conditions are formulated by linear matrix inequalities, and the filter gains are characterized in terms of the solution of a convex optimization problem. Finally, examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
This paper investigates the problem of ??∞ filtering for a class of uncertain Markovian jump linear systems. The uncertainty is assumed to be norm‐bounded and appears in all the matrices of the system state‐space model, including the coefficient matrices of the noise signals. It is also assumed that the jumping parameter is available. We develop a methodology for designing a Markovian jump linear filter that ensures a prescribed bound on the ??2‐induced gain from the noise signals to the estimation error, irrespective of the uncertainty. The proposed design is given in terms of linear matrix inequalities. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
20.
In this paper, the problem of exponential H∞ filter problem for a class of discrete‐time polytopic uncertain switched linear systems with average dwell time switching is investigated. The exponential stability result of the general discrete‐time switched systems using a discontinuous piecewise Lyapunov function approach is first explored. Then, a new µ‐dependent approach is proposed, which means the analysis or synthesis of the underlying systems is dependent on the increase degree µ of the piecewise Lyapunov function at the switching instants. A mode‐dependent full‐order filter is designed such that the developed filter error system is robustly exponentially stable and achieves an exponential H∞ performance. Sufficient existence conditions for the desired filter are derived and formulated in terms of a set of linear matrix inequalities, and consequently the minimal average dwell time and the corresponding filter are obtained from such conditions for a given system decay degree. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献