首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under a directed graph. We propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus. In this strategy, continuous communication in both controller update and triggering condition monitoring is not required, which means the proposed strategy is fully continuous communication free. Each agent only needs to monitor its own state continuously to determine if the event is triggered. Additionally, the approach shown here provides consensus with guaranteed positive inter‐event time intervals. Therefore, there is no Zeno behavior under the proposed consensus control algorithm. Finally, numerical simulations are given to illustrate the theoretical results.  相似文献   

2.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under undirected graphs. Based on state feedback, we propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus, without continuous communication in either controller update or triggering condition monitoring. Each agent only needs to monitor its own state continuously to determine if the event is triggered. It is proved that there is no Zeno behavior under the proposed consensus control algorithm. To relax the requirement of the state measurement of each agent, we further propose a novel distributed observer‐based event‐triggered consensus controller to solve the consensus problem in the case with output feedback and prove that there is no Zeno behavior exhibited. Finally, simulation results are given to illustrate the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the node‐to‐node consensus problem for multi‐agent networks possessing a leaders' layer and a followers' layer via the pinning control. In order to realize the consensus and reduce the update frequency of the controller, a suitable event‐triggered mechanism is introduced into the control strategy. Furthermore, the phenomenon of packet loss is considered in the designed controller. Based on the M‐matrix theory and Lyapunov stability theory, this paper presents the sufficient conditions for the node‐to‐node consensus of networks. Meanwhile, it is proved that the Zeno behaviour is excluded. Finally, two numerical simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

4.
In this paper, we consider the consensus problem of discrete‐time multi‐agent systems with multiplicative communication noises. Each agent can only receive information corrupted by noises from its neighbors and/or a reference node. The intensities of these noises are dependent on the relative states of agents. Under some mild assumptions of the noises and the structure of network, consensus is analyzed under a fixed topology, dynamically switching topologies and randomly switching topologies, respectively. By combining algebraic graph theory and martingale convergence theorem, sufficient conditions for mean square and almost sure consensus are given. Further, when the consensus is achieved without a reference, it is shown that the consensus point is a random variable with its expectation being the average of the initial states of the agents and its variance being bounded. If the multi‐agent system has access to the state of the reference, the state of each agent can asymptotically converge to the reference. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the mean square node‐to‐node consensus tracking problem for multi‐agent systems with nonidentical nonlinear dynamics and directed topologies. The randomly occurred uncertainties in the sampling devices may result in stochastically varied sampling periods, which lead to the investigation of node‐to‐node consensus problem under stochastic sampling. By employing the input‐delay method and discontinuous Lyapunov functional approach, it arrives at some sufficient conditions under which the state of each follower can track that of the corresponding leader asymptotically in the mean square sense. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We consider a distributed consensus problem for continuous‐time multi‐agent systems with set constraints on the final states. To save communication costs, an event‐triggered communication‐based protocol is proposed. By comparing its own instantaneous state with the one previously broadcasted to neighbours, each agent determines the next communication time. Based on this event‐triggered communication, each agent is not required to continuously monitor its neighbours' state and the communication only happens at discrete time instants. We show that, under some mild conditions, the constrained consensus of the multi‐agent system with the proposed protocol can be achieved with an exponential convergence rate. A lower bound of the transmission time intervals is provided that can be adjusted by choosing different values of parameters. Numerical examples illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers the issue of cluster consensus for multiple agents in fixed and undirected networks. Agents in a network are supposed to split into several clusters, and a fraction of the agents in each cluster are pinned by virtual leaders. According to the Lyapunov stability theory and graph theory, some appropriate event‐triggered protocols are developed for consensus of the agents belonging to the same cluster, which can greatly reduce both the number of communication updates and that of control actuation updates. Finally, a numerical example is shown to demonstrate the effectiveness of the proposed theoretical results.  相似文献   

8.
In this paper, the finite‐time agreement problem of continuous‐time multi‐agent systems with communication delays is considered. First, the multi‐agent system researched in the paper is described. Second, some notations and lemmas used in the paper are given. Then, agreement protocols for continuous (but non‐smooth) multi‐agent systems are proposed, which ensure that the states of agents reach agreement in finite time. The stability analysis and simulations are presented to show the effectiveness of the method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
This paper focuses on the average consensus problem of first‐order and second‐order continuous‐time multi‐agent systems with logarithmic quantized information transmission. The balanced and strongly connected digraphs are utilized to characterize the interaction topologies between agents. Based on the state estimation, distributed state updating mechanisms are introduced for every agent such that all agents’ states achieve average consensus asymptotically. By means of differential inclusion theory, we discuss the existence and convergence property of the Krasovskii solutions to the closed‐loop system models. By designing the proper control gain parameters and quantizer accuracy, two sufficient conditions are established to guarantee the achievement of average consensus. Finally, two numerical simulations are provided to illustrate the effectiveness of theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a control architecture that employs event‐triggered control techniques to achieve output synchronization of a group of heterogeneous linear time‐invariant agents. We associate with each agent an event‐triggered output regulation controller and an event‐triggered reference generator. The event‐triggered output regulation controller is designed such that the regulated output of the agent approximately tracks a reference signal provided by the reference generator in the presence of unknown disturbances. The event‐triggered reference generator is responsible for synchronizing its internal state across all agents by exchanging information through a communication network linking the agents. We first address the output regulation problem for a single agent where we analyze two event‐triggered scenarios. In the first one, the output and input event detectors operate synchronously, meaning that resets are made at the same time instants, while in the second one, they operate asynchronously and independently of each other. It is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded disturbances. We then merge the results on event‐triggered output regulation with previous results on event‐triggered communication protocols for synchronization of the reference generators to demonstrate that the regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory and that the closed‐loop system does not exhibit Zeno solutions. Several examples are provided to illustrate the advantages and issues of every component of the proposed control architecture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Without assuming that the mobile agents can communicate with their neighbors all the time, the consensus problem of multi‐agent systems with general linear node dynamics and a fixed directed topology is investigated. To achieve consensus, a new class of distributed protocols designed based only on the intermittent relative information are presented. By using tools from matrix analysis and switching systems theory, it is theoretically shown that the consensus in multi‐agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low‐dimensional switching systems. It is proved that there exists a protocol guaranteeing consensus if each agent is stabilizable and the communication rate is larger than a threshold value. Furthermore, a multi‐step intermittent consensus protocol design procedure is provided. The consensus algorithm is then extended to solve the formation control problem of linear multi‐agent systems with intermittent communication constraints as well as the consensus tracking problem with switching directed topologies. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The problem of second‐order consensus is investigated in this paper for a class of multi‐agent systems with a fixed directed topology and communication constraints where each agent is assumed to share information only with its neighbors on some disconnected time intervals. A novel consensus protocol designed based on synchronous intermittent local information feedback is proposed to coordinate the states of agents to converge to second‐order consensus under a fixed strongly connected topology, which is then extended to the case where the communication topology contains a directed spanning tree. By using tools from algebraic graph theory and Lyapunov control approach, it is proved that second‐order consensus can be reached if the general algebraic connectivity of the communication topology is larger than a threshold value and the mobile agents communicate with their neighbors frequently enough as the network evolves. Finally, a numerical example is simulated to verify the theoretical analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on the distributed event‐triggered fixed‐time consensus control problem of leader‐follower multiagent systems with nonlinear dynamics and uncertain disturbances. Two distributed fixed‐time consensus protocols are proposed based on distributed event‐triggered strategies, which can substantially reduce energy consumption and the frequency of the controller updates. It is proved that under the proposed distributed event‐triggered consensus tracking control strategies, the Zeno behavior is avoided. Compared with the finite‐time consensus tracking, the fixed‐time consensus tracking can be achieved within a settling time regardless of the initial conditions. Finally, 2 examples are performed to validate the effectiveness of the distributed event‐triggered fixed‐time consensus tracking controllers.  相似文献   

15.
We consider an event‐triggered update scheme for the problem of multiagent consensus in the presence of faulty and malicious agents within the network. In particular, we focus on the case where the agents take integer (or quantized) values. To keep the regular agents from being affected by the behavior of faulty agents, algorithms of the mean subsequence reduced type are employed, where neighbors taking extreme values are ignored in the updates. Different from the real‐valued case, the quantized version requires the update rule to be randomized. We characterize the error bound on the achievable level of consensus among the agents as well as the necessary structure for the network in terms of the notion of robust graphs. We verify via a numerical example the effectiveness of the proposed algorithms.  相似文献   

16.
The problem of event‐triggered guaranteed cost consensus of discrete‐time singular multi‐agent systems with switching topologies is investigated in this paper. To save the limited network communication bandwidth of multi‐agent systems, a novel event‐triggered networked consensus mechanism is proposed. Based on the graph theory and singular system theory, sufficient conditions of guaranteed‐cost consensus of discrete‐time singular multi‐agent systems are derived and given in the form of the linear matrix inequalities, respectively. A co‐design approach of the multi‐agent consensus gain matrix and the event‐triggered parameters is presented. Furthermore, based on the approach of second class equivalent transformation for singular systems, the cost function is determined, and an explicit expression of consensus functions is presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

17.
Firstly, guaranteed cost consensus for multi‐agent systems is introduced based on state errors among neighboring agents and control inputs of all agents, where a tradeoff between the consensus regulation performance and the control effort is considered. Then, a sufficient condition for guaranteed cost consensus is given by the state‐space decomposition approach and the Lyapunov method, where an upper bound of the cost function is determined and an approach is proposed to determine the control gain. It is worth mentioning that the criterions for guaranteed cost consensus are only dependent on the maximum eigenvalue of the Laplacian matrices of switching topologies. Finally, numerical simulations are given to demonstrate theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates robust consensus for multi‐agent systems with discrete‐time dynamics affected by uncertainty. In particular, the paper considers multi‐agent systems with single and double integrators, where the weighted adjacency matrix is a polynomial function of uncertain parameters constrained into a semialgebraic set. Firstly, necessary and sufficient conditions are provided for robust consensus based on the existence of a Lyapunov function polynomially dependent on the uncertainty. In particular, an upper bound on the degree required for achieving necessity is provided. Secondly, a necessary and sufficient condition is provided for robust consensus with single integrator and nonnegative weighted adjacency matrices based on the zeros of a polynomial. Lastly, it is shown how these conditions can be investigated through convex programming by exploiting linear matrix inequalities and sums of squares of polynomials. Some numerical examples illustrate the proposed results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the synchronization problem of generic linear multiagent systems via integral‐type event‐triggered control. Each agent can only utilize the intermittent information of its neighboring agents in the control scheme. Based on the integral‐type event conditions, an event‐triggered control protocol is designed to guarantee the synchronization of multiagent systems, and Zeno behavior is excluded by showing the existence of a positive lower bound on the inter‐event intervals. Then, we propose the integral‐type event‐triggered control algorithms to study the leader‐following synchronization. It is shown that under the control algorithms all the followers track the leader and no Zeno behavior occurs. The effectiveness of the proposed control schemes is demonstrated by simulation examples.  相似文献   

20.
In this paper, an output‐feedback adaptive consensus tracking control scheme is proposed for a class of high‐order nonlinear multi‐agent systems. The agents are allowed to have unknown parameters, unknown nonlinearities, and input quantization simultaneously. The desired trajectory to be tracked is available for only a subset of agents, and only the relative outputs and the quantized inputs need to be measured or transmitted as signal exchange among neighbors regardless of the system order. By introducing a kind of high‐gain K‐filters and a smooth function, the effect among agents caused by the unknown nonlinearities is successfully counteracted, and all closed‐loop signals are proved to be globally uniformly bounded. Moreover, it is shown that the tracking errors converge to a residual set that can be made arbitrarily small. Simulation results on robot manipulators are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号