首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel framework to asymptotically adaptively stabilize a class of switched nonlinear systems with constant linearly parameterized uncertainty. By exploiting the generalized multiple Lyapunov functions method and the recently developed immersion and invariance (I&I) technique, which does not invoke certainty equivalence, we design the error estimator, continuous state feedback controllers for subsystems, and a switching law to ensure boundedness of all closed‐loop signals and global asymptotical regulation of the states, where the solvability of the I&I adaptive stabilization problem for individual subsystems is not required. Then, along with the backstepping method, the proposed design technique is further applied to a class of switched nonlinear systems in strict‐feedback form with an unknown constant parameter so that the I&I adaptive stabilization controllers for the system is developed. Finally, simulation results are also provided to demonstrate the effectiveness of the proposed design method.  相似文献   

2.
This paper studies the issues of adaptive passification and global stabilization for a class of switched nonlinearly parameterized systems. Each subsystem is allowed to be non‐feedback passive. Firstly, a passivity concept for switched nonlinear systems is proposed. In particular, the change of storage functions of an inactive subsystem is described. An adaptively feedback passive switched nonlinear system is shown to be stabilized under the partly asymptotic zero‐state detectability assumption. Secondly, the adaptive feedback controller for each subsystem and a state‐dependent switching law are designed to render the resulting closed‐loop system passive. Finally, a new switched adaptive control technique is developed to solve the adaptive stabilization problem by exploiting the recursive feedback passification design technique and parameter separation technique when all subsystems have any same relative degree. The simulation results on adaptive stabilization of continuously stirred tank reactor system show effectiveness of the proposed design method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the problem of global disturbance rejection for switched nonlinear systems in strict‐feedback form with unknown exosystem where the solvability of the disturbance rejection problem for subsystems is not assumed. First, a sufficient condition for the solvability of the global disturbance rejection problem is given. As an extension of the classic concept of internal model for non‐switched systems, a new concept of switched internal model is proposed. Second, in order to solve the problem in question, a constructive adaptive control methodology is established on the basis of the multiple Lyapunov functions method, backstepping, and the changing supply functions technique. Finally, an example is provided to demonstrate the effectiveness of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This work investigates and solves the design of adaptive impulsive observers for a class of uncertain switched nonlinear systems with unknown parameter. Sufficient conditions are derived for designing such observers for each subsystem to reconstruct asymptotically and update system states in real time. The state observer is represented in terms of impulsive differential equations. The parameter estimation law is modelled by an impulse‐free, time‐varying differential equation associated with the impulse time sequence in order to determine when the observer estimated state is updated. The asymptotic convergence to zero of the observation errors is established by applying the method of multiple time‐varying Lyapunov functions. Sufficient conditions are derived that guarantee the convergence of parameter estimation. An example of switched Lorenz system along with numeric and simulation results is presented to demonstrate the effectiveness of the proposed method.  相似文献   

5.
This paper is concerned with the global finite-time stabilisation problem for a class of switched nonlinear systems under arbitrary switchings. All subsystems of the studied switched system under consideration are in lower triangular form. Based on the adding one power integrator technique, both a class of non-Lipschitz continuous state feedback controllers and a common Lyapunov function are simultaneously constructed such that the closed-loop switched system is global finite-time stable under arbitrary switchings. In the controller design process, a common coordinate transformation of all subsystems is exploited to avoid using individual coordinate transformations for subsystems. Finally, two examples are given to show the effectiveness of the proposed method.  相似文献   

6.
This paper addresses the state‐tracking model reference adaptive control problem for a class of switched systems with parametric uncertainties, where switchings between subsystems and designed adaptive controller are asynchronous. First, we establish a stability criterion for a switched reference model and convert the state‐tracking problem into the stability problem of an error switched system. Then, an adaptive law is designed, and the global practical stability of the error switched system is guaranteed under a class of switching signals characterized by a dwell‐time condition. An electrohydraulic system is given as an example to demonstrate the feasibility and effectiveness of the proposed design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with an adaptive tracking problem for a more general class of switched nonstrict‐feedback nonlinear time‐delay systems in the presence of quantized input. The system structure in a nonstrict‐feedback form, the discrete and distributed time‐varying delays, the sector‐bounded quantized input, and arbitrary switching behavior are involved in the considered systems. In particular, to overcome the difficulties from the distributed time‐varying delays and the sector‐bounded quantized input, the mean‐value theorem for integrals and some special techniques are exploited respectively. Moreover, by combining the Lyapunov‐Razumikhin method, dynamic surface control technique, fuzzy logic systems approximation, and variable separation technique, a quadratic common Lyapunov function is easily built for all subsystems and a common adaptive quantized control scheme containing only 1 adaptive parameter is proposed. It is shown that the tracking error converges to an adjustable neighborhood of the origin whereas all signals of the closed‐loop systems are semiglobally uniformly ultimately bounded. Finally, 2 simulation examples are provided to verify the feasibility and effectiveness of the proposed design methodology.  相似文献   

8.
This paper studies the problem of stabilisation of switched nonlinear systems with output and input constraints. We propose a recursive approach to solve this issue. None of the subsystems are assumed to be stablisable while the switched system is stabilised by dual design of controllers for subsystems and a switching law. When only dealing with bounded input, we provide nested switching controllers using an extended backstepping procedure. If both input and output constraints are taken into consideration, a Barrier Lyapunov Function is employed during operation to construct multiple Lyapunov functions for switched nonlinear system in the backstepping procedure. As a practical example, the control design of an equilibrium manifold expansion model of aero-engine is given to demonstrate the effectiveness of the proposed design method.  相似文献   

9.
The problem of global stabilization is investigated for a class of switched nonlinear feedforward systems in this paper where the solvability of the stabilization problem for individual subsystem is not assumed. Some sufficient condition for the stabilization problem to be solvable is derived for the first time by exploiting the multiple Lyapunov functions method and the forwarding technique. Also, we design a switching law and construct bounded state feedback controllers of subsystems explicitly by a recursive design algorithm to achieve global asymptotic stability. The provided technique permits removal of a common restriction in which all subsystems in switched nonlinear feedforward systems are globally asymptotically stable. Finally, a numerical example is provided to demonstrate the feasibility of the theoretical result. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the problem of global adaptive finite-time stabilisation for a class of switched nonlinearly parameterised systems. Without requiring that each subsystem is globally adaptively finite-time stabilisable, a switched adaptive finite-time control scheme is developed by exploiting the multiple Lyapunov functions method and adding a power integrator technique. By using the parameter separation technique, the unknown parameters are separated from nonlinear functions. On the basis of finite-time Lyapunov stability theory, it is proved that the proposed controller can guarantee that the state of the resulting closed-loop system converges to the origin in finite time. Finally, an example is given to demonstrate the effectiveness of the proposed method.  相似文献   

11.
Tracking control for switched linear systems with time‐delay is investigated in this paper. Based on the state‐dependent switching method, sufficient conditions for the solvability of the tracking control problem are given. We use single Lyapunov function technique and a typical hysteresis switching law to design a tracking control law such that the H model reference tracking performance is satisfied. The controller design problem can be solved efficiently by using linear matrices inequalities. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. It is highly desirable that a non‐switched time‐delay system can not earn such property. Simulation example shows the feasibility and validity of the switching control law. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
切换系统基于反演递推法的鲁棒自适应控制   总被引:3,自引:2,他引:1  
刘志峰  苏佰丽 《计算机仿真》2009,26(10):166-170
切换系统的稳定控制问题是一个重要的研究问题。基于李雅普诺夫函数的方法是研究切换系统稳定性的重要手段,但是有约束非线性系统的李亚普诺夫函数构造仍是一个难题(特别是对带有不确定性的非线性系统)。针对一类带有不确定性的严格反馈型切换非线性系统,利用反演递推法(backstepping)设计了子系统的基于李亚普诺夫函数的鲁棒自适应控制器,并证明了子闭环系统的稳定性,同时设计适当的切换律保证了整个闭环系统的稳定性。其中系统的未知不确定性及外界干扰不要求线性增长速度,并由模糊系统在线逼近。结果表明所提出方法的有效性。  相似文献   

13.
In this paper, the problem of adaptive neural network (NN) tracking control of a class of switched strict‐feedback uncertain nonlinear systems is investigated by state‐feedback, in which the solvability of the problem of adaptive NN tracking control for individual subsystems is unnecessary. A multiple Lyapunov functions (MLFs)–based adaptive NN tracking control scheme is established by exploiting backstepping and the generalized MLFs approach. Moreover, based on the proposed scheme, adaptive NN controllers of all subsystems and a state‐dependent switching law simultaneously are constructed, which guarantee that all signals of the resulting closed‐loop system are semiglobally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. The scheme provided permits removal of a technical condition in which the adaptive NN tracking control problem for individual subsystems is solvable. Finally, the effectiveness of the design scheme proposed is shown by using two examples.  相似文献   

14.
This paper addresses the issue of robust stabilisation for a class of state-constrained high-order switched nonlinear systems whose subsystems are allowed to be all unstabilizable. A novel robust control scheme is established based on effective coupling of the technique of adding a power integrator and the method of multiple barrier Lyapunov functions. Explicitly, a sufficient condition for robustly stabilising the resulting closed-loop system in a domain is presented, which meanwhile can also guarantee that the violation of the constraints does not happen. Moreover, in the switching law design, we do not require the connection of barrier Lyapunov functions for two adjacent subsystems, and even a certain amount of jump is also allowed. Finally, the effectiveness of the provided control strategy is demonstrated via a simulation example.  相似文献   

15.
This paper investigates the problem of output feedback control for a class of stochastic nonlinear systems with time‐delays. Using dynamic gain scaling technique, an adaptive update law is introduced to the observer and controller to deal with the unknown parameters. Based on the Lyapunov‐Krasovskii functional and stochastic Barbalat's lemma, it is proved that the proposed universal‐type adaptive output feedback controller can regulate all the states of the closed‐loop system almost surely. A simulation example is presented to illustrate the effectiveness of the proposed design procedure.  相似文献   

16.
This paper studies practical output tracking of switched nonlinear systems in p-normal form. No solvability of the practical output tracking problem for subsystems is required. A constructive scheme to solve the problem for a switched nonlinear system is set up by exploiting the single Lyapunov function method and the tool of adding a power integrator. Also, we design a proper switching law and construct state-feedback controllers of subsystems. A two inverted pendulums as a practical example, which cannot be handled by the existing approaches, illustrates our theoretical result.  相似文献   

17.
In this paper, a novel finite-time distributed identification method is introduced for nonlinear interconnected systems. A distributed concurrent learning-based discontinuous gradient descent update law is presented to learn uncertain interconnected subsystems’ dynamics. The concurrent learning approach continually minimizes the identification error for a batch of previously recorded data collected from each subsystem as well as its neighboring subsystems. The state information of neighboring in...  相似文献   

18.
This paper studies the adaptive state feedback control for a class of switched time‐varying stochastic high‐order nonlinear systems under arbitrary switchings. Based on the common Lyapunov function and using the inductive method, virtual controllers are designed step by step and the form of the input signal of the system is constructed at the last. The unknown parameters are addressed by the tuning function method. In particular, both the designed state feedback controller and the adaptive law are independent of switching signals. Based on the designed controller, the boundness of the state variables can be guaranteed in probability. Furthermore, without considering the Wiener process or with the known parameter in the assumption, adaptive finite‐time stabilization and finite‐time stabilization in probability can be obtained, respectively. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

19.
This paper investigates the problem of full state constraints-based adaptive control for a class of switched nonlinear pure-feedback systems under arbitrary switchings. First, the switched pure-feedback system is transformed into a switched strict-feedback system with non-affine terms based on the mean value theorem. Then, by exploiting the common Lyapunov function (CLF) method, the Barrier Lyapunov function method and backstepping, state feedback controllers of individual subsystems and a common Barrier Lyapunov function (CBLF) are constructed, which guarantee that all signals in the closed-loop system are global uniformly bounded under arbitrary switchings, and full state constraints are not violated. Furthermore, the tracking error can converge to a bounded compact set. Two examples, which include a single-link robot as a practical example, are provided to demonstrate the effectiveness of the proposed design method.  相似文献   

20.
This article investigates the problem of global stabilisation for a class of switched nonlinear systems in p-normal form whose subsystems are not assumed to be asymptotically stabilisable. Unlike the existing results on systems in p-normal form where the power order is only positive odd integer, we allow positive even integer of the power order. Using the convex combination method and the adding a power integrator technique, we construct a switching law and design state-feedback controllers of individual subsystems explicitly by a recursive design algorithm to guarantee asymptotic stability of the closed-loop system. The designed method is also extended to the global stabilisation problem of switched nonlinear systems in p-normal form with zero-dynamics. As an application of the proposed design method, a continuously stirred tank reactor is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号