首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five Holstein cows (5 wk postpartum) were used in a Latin square design (15-d periods) to determine rumen fill and fractional rates of ruminal digestion and passage. Treatments consisted of prebloom, midbloom, and full bloom alfalfa hay, mature bromegrass hay, and corn silage fed in diets containing forage: concentrate in a 60:40 ratio (DM basis) formulated to be isonitrogenous. Intake of DM averaged 4.0% of body weight for prebloom alfalfa and corn silage. Milk yield and DM intake were lower for full bloom alfalfa and bromegrass than for prebloom alfalfa. Digestibility of organic matter was 7.5 percentage units lower for full bloom than for prebloom alfalfa. Weight of DM in the rumen was higher for midbloom and full bloom alfalfa and bromegrass than with prebloom alfalfa. Ruminal retention time of Yb applied to forage was longer for bromegrass than for prebloom alfalfa. Fractional rates of in situ NDF digestion were slower for full bloom alfalfa and bromegrass than for prebloom alfalfa. Results suggest that the point of limitation of feed intake due to gut fill is dependent on forage quality as well as energy demand of the animal. Dry matter fill of the rumen was more closely related to rates of ruminal digestion and passage than to total tract digestibility or maximum digestibility after lengthy in situ fermentation.  相似文献   

2.
《Journal of dairy science》1986,69(6):1545-1559
Six Holstein cows were fed prebloom alfalfa hay in long, chopped, and pelleted form (60:40 hay:grain ratio) in a replicated 3 × 3 Latin square design (21-d periods) conducted in early (wk 3 to 11) and middle (wk 20 to 32) lactation and during the dry period to attain three feed intakes for determination of digesta kinetics. Dry matter intakes averaged 3.75, 2.93, and 1.95% of body weight across intakes. There was no effect of forage physical form on intake or milk production. Chewing activity, ruminal fermentation patterns, and milk fat percent were similar for long and chopped hay treatments. Digestibility of organic matter was reduced 7.9% at high versus low intake and 3.2% when pelleted rather than long hay was fed. Ruminal retention time of ytterbium applied to hay declined with increasing feed intake. There was no effect of chopping or grinding on rumen dry matter fill or retention time of ytterbium applied to hay. Effects of forage physical form on retention time and ruminal fill appear small when low fiber alfalfa is fed. Digestibility depression associated with fine grinding of high quality alfalfa was related to depressed ruminal digestion rate. Digestibility depression at high intake was related to shortened ruminal residence time.  相似文献   

3.
Four multiparous Holstein cows in midlactation were fed 60:40 forage:grain (dry basis) diets containing first-cutting alfalfa harvested at the early bud or early flower stage of maturity. Each of the two maturities was preserved as silage and hay. A 4 x 4 Latin square design experiment (28-d periods) was conducted to measure the impact of alfalfa maturity and method of preservation on milk production and composition, intake, digestion, digesta passage, and particle size of digesta. Milk production and composition were not affected by treatment. Increases in fiber intake resulted from increased maturity and preservation as hay, but this did not appear to limit DMI or milk production. Both increased maturity and preservation as hay resulted in the following effects in cows: more time spent ruminating, greater total chewing time, greater wet and dry rumen fill, and a greater volume of rumen contents. Rumen retention time of La applied to forage was 6 h less, and 0-h disappearance of DM from dacron bags was greater for silage than hay. In situ DM disappearance rates averaged 15%/h for silage and 9.5%/h for hay. Lag time was related inversely to 0-h disappearance. Masticates and mixed rumen samples from cows fed hay showed a greater percentage of DM as particles greater than or equal to 9.5 mm in length. Gross feed efficiency was greater for cows fed alfalfa silage than for those fed alfalfa hay, probably because of more rapid digestion and passage. The potential for rumen fill to limit intake in high producing cows appears to be greater for alfalfa preserved as hay than that preserved as silage.  相似文献   

4.
The objective of this study was to investigate the effects of varying dietary forage particle size on chewing activity, ruminal mat characteristics, passage, and in situ ruminal and total tract digestion in dairy cows at a low- and high-concentrate inclusion. The experiment was designed as a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Four ruminally cannulated late-lactating dairy cows were restrictively fed (17 kg of dry matter/d), in four 23-d periods, 1 of 4 different diets varying in the theoretical particle size (6 and 30 mm) of hay (56.6% NDF of dry matter) and in the levels (approximately 20 and 60%, dry matter basis) of a cereal-based concentrate. Ingredients of the ration were offered separately to the cows; dietary hay and low-level concentrate were offered twice daily at 0800 and 1600 h, whereas concentrate of the high-level treatment was offered in 4 meals a day at 0800, 1200, 1600, and 1900 h. This study showed that altering the forage particle size from 6 to 30 mm in a low-concentrate diet significantly increased the rumination time and ruminal mat consistency without affecting ruminal fermentation and passage. Further, particle breakdown and proportion of mat in the rumen increased, and in situ hay dry matter degradability improved, which in turn indicated a higher capacity of ruminal digesta to degrade fiber. On the other hand, increasing the forage particle size in a diet containing a high amount of concentrate increased the proportion of dry matter retained on a 1.18-mm screen from 37.5 to 42.0% and extended the rumination time by 100 min/d, as well as increasing the ruminal mat consistency. However, ruminal particle breakdown, short-term ruminal pH, fibrolytic capacity of the digesta, and proportion of mat in the rumen decreased. This was also reflected in a higher bailable liquid pool, increased fractional passage rate of solid digesta from the reticulorumen, and increased retention time in the hindgut, which in turn indicated a shift of fiber digestion from the rumen to the lower digestive tract. This study showed that the response of chewing or ruminating activity alone seemed to be insufficient to assess the dietary physical effectiveness or fiber adequacy in limit-fed dairy cows when high-concentrate diets were fed separately. Based on the results of this study, we concluded that inclusion of coarsely chopped hay in the high-concentrate diet did not appear to further improve rumen conditions and digestion when the rations were formulated to exceed the fiber requirements in limit-fed dairy cows.  相似文献   

5.
Effects of ratio of alfalfa silage to alfalfa hay and forage particle size on nutrient intakes, site of digestion, rumen pools, and passage rate of ruminal contents were evaluated in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The diets consisted of 60% barley-based concentrate and 40% forage made up either of 50:50 or 25:75 of alfalfa silage:alfalfa hay and alfalfa hay was either chopped or ground. Lactating dairy cows surgically fitted with ruminal and duodenal cannulas were used and offered ad libitum access to a total mixed ration. Intakes of nutrients were increased by increasing ratio of silage to hay but were not affected by particle size of forage. Change in ratio of silage to hay of diets did not affect site and extent of digestion. However, increased forage particle size of the diets improved digestibility of fiber and N in the total tract, and as well as digestibility of organic matter, starch, and acid detergent fiber in the intestine. There was a shift of starch digestion from the rumen to the intestine when forage particle size was increased, although total digestion of starch was not changed. Ruminal microbial protein synthesis and microbial efficiency also improved with increasing forage particle size. Cows fed ground hay versus chopped hay had significantly lower rumen wet mass regardless of the ratio of silage to hay. Reduced forage particle size also lowered ruminal nutrient pool size for cows fed the high silage diet. Ruminal passage rates of liquid and solid were decreased by reducing the ratio of silage to hay, and retention time of solids in the total tract was shortened by reducing forage particle size. These results indicate that manipulating ratio of silage to hay in the diets of dairy cows changed feed intake but had little effect on digestion. In contrast, increased forage particle size in dairy cow diets improved fiber digestion and microbial protein synthesis in the rumen, and shifted starch digestion from the rumen to the intestine. Dietary particle size, expressed as physically effective neutral detergent fiber, was a reliable indication of ruminal microbial protein synthesis and nutrient digestion.  相似文献   

6.
The objectives of this study were to determine the effects of dietary forage source with two concentrate concentrations on dry matter (DM) intake, rumen fill, ruminal and intestinal digestibility of nutrients, and duodenal N fractions in lactating cows. Four rumen and duodenal cannulated Holstein cows in late lactation were used in 4 x 4 Latin square design experiment with 21-d periods. Diets were 1) 65% first-cut alfalfa silage and 35% concentrate, 2) 50% alfalfa and 50% concentrate, 3) 65% bromegrass silage and 35% concentrate, and 4) 50% bromegrass and 50% concentrate. Dry matter intake was not affected by forage source but tended to be (P = 0.08) higher for cows fed diets with 50% concentrate. Rumen fill was greater (P < 0.01) for cows fed bromegrass compared with those fed alfalfa silage. Ruminal and intestinal digestion of DM was not affected by dietary forage source or concentrate level. Total N intake was greater for cows fed alfalfa-based diets, reflecting the higher crude protein content of alfalfa. However, total N flow at the duodenum was not affected by either forage source or concentrate in the diet. Although forage source influenced the site of digestion of some nutrients no significant effects on total tract digestibilities were observed.  相似文献   

7.
Alfalfa hay was chopped in a tubgrinder containing screens with apertures of 31, 63, or 100 mm. The hays were fed with concentrate to lactating cows (Experiment 1) and without concentrate to nonlactating, fistulated cows (Experiment 2). The objective was to find effects of forage particle size upon intake, digestibility, milk yield, and ruminal cell wall. In Experiment 1, there were no significant effects of forage particle size upon forage or total DM intake, digestibility of NDF, cellulose, nitrogen retained, milk yield, or milk fat percent. Digestibility of DM, ADF, and protein increased as particle size decreased. In Experiment 2, forage DM intake was greater for the 63 than the 100-mm forage but digestibility of cell wall and DM were not different among treatments. Ruminal volume for the 31 and 63-mm forages was greater than the 100-mm forage. Ruminal DM and ruminal cell wall were greater for the 63-mm forage than the 100-mm forage, with the 31-mm forage in between. Increased volume, DM, and cell wall probably account for increased intake of the 63-mm forage. Chopping alfalfa to these three sizes had no particularly positive or negative effects on animal productivity.  相似文献   

8.
Effects offorage particle size measured as physically effective NDF and ratio of alfalfa silage to alfalfa hay of diets on feed intake, chewing activity, particle size reduction, salivary secretion, ruminal fermentation, and milk production of dairy cows were evaluated using a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The diets consisted of 60% barley-based concentrate and 40% forage, comprised either of 50:50 or 25:75 of alfalfa silage:alfalfa hay, and alfalfa hay was either chopped or ground. Various methods were used to determine physically effective NDF content of the diets. Cows surgically fitted with ruminal and duodenal cannulas were offered ad libitum access to these total mixed diets. The physically effective NDF content of the diets was significantly lower when measured using the Penn State Particle Separator than when measured based on particles retained on 1.18-mm screen. Intake of DM was increased by increasing the ratio of silage to hay but was not affected by physically effective NDF content of diets. Eating time (hours per day) was not affected by the physically effective NDF content of diets, although cows spent more time eating per unit of DM or NDF when consuming high versus low alfalfa hay diets. Ruminating time (hours per day) was increased with increased physically effective NDF content of the diets. Rumen pH was affected more by changing dietary particle size than altering the ratio of silage to hay. Feeding chopped hay instead of ground hay improved ruminal pH status: time during which ruminal pH was above 6.2 increased and time during which ruminal pH was below 5.8 decreased. Milk production was increased by feeding higher concentrations of alfalfa silage due to increased DM intake, but was not affected by dietary particle size. Feed particle size, expressed as mean particle length or physically effective NDF was moderately correlated with ruminating time but not with eating time. Although physically effective NDF and chewing time were not correlated to mean rumen pH, they were negatively correlated to the area between the curve and pH 5.8, indicating a positive effect on reducing the risk of acidosis. Milk fat content was correlated to rumen pH but not to physically effective NDF or chewing activity. These results indicate that increasing physically effective NDF content of the diets increased chewing activity and improved rumen pH status but had limited effect on milk production and milk fat content.  相似文献   

9.
Effects of forage particle size and sodium bicarbonate on milk production, ruminal fermentation, ruminal fluid dilution rate, dry matter passage from the rumen, and nutrient digestion were measured in four Holstein cows in a 4 X 4 Latin-square experiment. Cows were fed ad libitum amounts of a diet of approximately 46% concentrate and 54% alfalfa hay. The 2 X 2 factorial arrangement of treatments were: 1) long stem alfalfa hay, 2) long stem alfalfa hay + 1.4% sodium bicarbonate (3.0% of concentrate), 3) chopped alfalfa hay (1.3 cm), and 4) chopped alfalfa hay + 1.4% sodium bicarbonate. Feed intake, milk yield, and milk composition were similar among treatments. Ruminal pH and concentration and molar percentages of volatile fatty acids were not altered. Decreasing feed particle size reduced ruminal fluid outflow as estimated by polyethylene glycol and chromium ethylenediamine tetraacetic acid dilution rates. Digestion of nutrients was decreased with chopped alfalfa hay but was not related to faster rate of passage of smaller size feed particles as determined by rare earth markers. Sodium bicarbonate increased water intake and tended to improve nutrient digestion. Absence of a significant effect of sodium bicarbonate upon rate of passage of chopped hay indicates that feed particles of this size are not significantly affected by small increases of dilution rate of ruminal fluid. Addition of sodium bicarbonate to an alfalfa hay (forage)-based diet did not improve production responses but did increase nutrient digestion.  相似文献   

10.
Two trials were conducted with lactating dairy cows to determine effects on intake, performance, and chewing activity of supplemental fat in early lactation diets that differed in fiber level and particle size. In trial 1, whole raw soybeans were added at 11.6% of ration DM to alfalfa silage-based TMR containing either finely chopped silage or the same silage with 8.1% coarsely chopped alfalfa hay. Each combination of soybeans (0 or 11.6%) and silage (fine or hay added) was fed as an isocaloric, isonitrogenous TMR to eight Holstein cows in early lactation in a replicated Latin square design with 4-wk periods. Addition of soybeans decreased DMI for fine silage. With silage plus hay, soybean addition decreased milk yield and protein content but increased fat test so that FCM was unchanged. Silage plus hay promoted chewing activity with no interaction of forage particle size with fat addition on chewing activity. In trial 2, TMR based on alfalfa and corn silage contained either 25 or 29% NDF and 0 or 11.6% soybeans. Otherwise, trials 1 and 2 were similar. Soybean addition decreased DMI with low NDF diets. Addition of fat from soybeans had no effect on milk yield or composition, but low fiber decreased fat test and chewing activity. When .4 to .5 kg/d of supplemental fat from whole raw soybeans was fed, higher dietary NDF and larger particle size promoted greater intake with no effect on FCM yield.  相似文献   

11.
A study was conducted to evaluate the effect of including alfalfa preserved either as silage or long-stem or chopped hay on DMI and milk fat production of dairy cows fed corn silage-based diets with supplemental tallow (T). Fifteen Holstein cows that averaged 117 DIM were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments (DM basis) were: 1) 50% corn silage:50% concentrate without T (CS); 2) 50% corn silage:50% concentrate with 2% T (CST); 3) 25% corn silage:25% short-cut alfalfa hay:50% concentrate with 2% T (SAHT); 4) 25% corn silage:25% long-cut alfalfa hay:50% concentrate with 2% T (LAHT); and 5) 25% corn silage:25% alfalfa silage:50% concentrate with 2% T (AST). Cows were allowed ad libitum consumption of a TMR fed 4 times daily. Diets averaged 16.4% CP and 30.3% NDF. Including 2% T in diets with corn silage as the sole forage source decreased DMI and milk fat percentage and yield. Replacing part of corn silage with alfalfa in diets with 2% T increased milk fat percentage and yield. The milk fat of cows fed CST was higher in trans-10 C18:1 than that of cows fed diets with alfalfa. No effect of alfalfa preservation method or hay particle length was observed on DMI and milk production. The milk fat percentage and yield were lower, and the proportion of trans-10 C18:1 in milk fat was higher for cows fed LAHT than for cows fed SAHT. Alfalfa preservation method had no effect on milk fat yield. Ruminal pH was higher for cows fed alfalfa in the diets, and it was higher for cows fed LAHT than SAHT. Feeding alfalfa silage or chopped hay appears to be more beneficial than long hay in sustaining milk fat production when 2% T is fed with diets high in corn silage. These results support the role of trans fatty acids in milk fat depression.  相似文献   

12.
Three Latin square trials, with 20 (two trials) or 24 (one trial) multiparous lactating Holstein cows (four in each trial with ruminal cannulae), compared the feeding value of red clover and alfalfa silages harvested over 3 yr. Overall, the forages contained similar amounts of neutral detergent fiber and acid detergent fiber; however, red clover silage contained more hemicellulose, less ash and crude protein (CP), and only 67% as much nonprotein N, as a proportion of total N, as did alfalfa silage. Diets were formulated with equal dry matter (DM) from alfalfa or red clover silage and contained on average 65% forage, 33 or 30% ground high moisture ear corn, and 0 or 3% low soluble fishmeal (DM basis). Diets fed in the Latin squares contained (mean dietary CP): 1) alfalfa (17.8% CP); 2) red clover (15.1% CP); 3) alfalfa plus fishmeal (19.6% CP); and 4) red clover plus fishmeal (16.9% CP). Although performance varied somewhat among trials, overall statistical analysis showed that replacing alfalfa with red clover reduced yields of milk, fat-corrected milk, fat, protein, lactose, and SNF; these effects were related to the 1.2 kg/d lower DM intake for cows fed red clover. Replacing alfalfa with red clover improved body weight gain and reduced concentrations of milk and blood urea and ruminal NH3. Apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose all were greater when red clover was fed. There were no significant forage x fishmeal interactions for DM intake and yield of milk and milk components, indicating that supplementation with rumen undegradable protein gave similar increases in production on both forages. Net energy of lactation (NE(L)), estimated from maintenance, mean milk yield, and body weight change, in alfalfa and red clover silage were, respectively, 1.25 and 1.38 Mcal NE(L)/kg of DM, indicating 10% greater NE(L) in red clover.  相似文献   

13.
Three rumen-cannulated Holstein cows in mid to late lactation were randomly assigned to a 3 x 3 Latin square with the following concentrate feeding frequencies: one, two, and four times daily. Cows were fed ad libitum a diet containing 55% corn silage and 45% concentrate (DM basis). The forage portion of the diet was fed twice daily to all cows separately from the concentrate. Each experimental period was 20 d in duration. After a 12-d adaptation, daily individual feed consumption and milk production were measured. Rumen digesta were collected prior to (0 h) and at 2, 4, and 8 h after the morning feeding to measure postprandial changes in protozoa numbers, pH, VFA, and NH3 N. Chromium-EDTA and ytterbium chloride were used as liquid and particulate markers to estimate liquid and solid digesta turnover rate in the rumen. Concentrate and forage DM intake, ruminal protozoa numbers, pH, VFA, and NH3 N concentrations, and digesta turnover rate were not affected by concentrate feeding frequency. There was a significant concentrate feeding frequency with sampling time interaction influence on NH3 N in which feeding concentrate four times daily minimized postprandial fluctuation of rumen NH3 N concentration. Feeding concentrate four times daily increased milk fat and protein production.  相似文献   

14.
Twelve early lactation Holstein cows (4 fistulated) were used in replicated 4x4 Latin squares with 4-wk periods to determine the effective neutral detergent fiber (NDF) content of wet corn gluten feed and to measure the effect of forage particle size on ruminal mat consistency and passage rate of wet corn gluten feed. Diets were 1) 23.3% NDF (17.4 percentage units of NDF from alfalfa silage), 2) diet 1 plus 11.1 additional percentage units of NDF from alfalfa silage, 3) diet 1 plus 10.7 percentage units of NDF from wet corn gluten feed, and 4) 8.6 percentage units of NDF from alfalfa silage plus 8.9 percentage units of NDF from coarsely chopped alfalfa hay and 10.7 percentage units of NDF from wet corn gluten feed. The calculated effective NDF factor for wet corn gluten feed, using change in milk fat concentration per unit change in NDF, was 0.74 compared with an assumed 1.0 for alfalfa silage. Rumination activity was measured to calculate a physically effective NDF factor for wet corn gluten feed, which was only 0.11 compared with 1.0 for alfalfa silage. Physically effective NDF also was determined for wet corn gluten feed by wet sieving; 22% of the particles were retained on the 3.35-mm screen or greater. Ruminal mat consistency increased and passage rate of wet corn gluten feed decreased with added hay. The inclusion of chopped alfalfa hay to a diet containing wet corn gluten feed increased ruminal mat consistency, rumination activity, and slowed passage rate, resulting in greater ruminal digestion of NDF from wet corn gluten feed. Depending on the response variable, the effectiveness of NDF from wet corn gluten feed varied from 0.11 to 0.74.  相似文献   

15.
The effects of different wheat adaptation strategies on ruminal fluid pH, dry matter intake (DMI) and energy-corrected milk (ECM) were measured in 28 late-lactation dairy cows. Cows were fed either perennial ryegrass (PRG) hay or alfalfa hay and had no previous wheat adaptation. Wheat was gradually substituted for forage in 3 even increments, over 6 or 11 d, until wheat made up 40% of DMI (~8 kg of dry matter/cow per day). We found no differences in DMI between adaptation strategies (6 or 11 d) within forage type; however, cows fed alfalfa hay consumed more overall and produced more ECM. The rate of ruminal pH decline after feeding, as well as the decrease in mean, minimum, and maximum ruminal pH with every additional kilogram of wheat was greater for cows fed alfalfa hay. Cows fed alfalfa hay and on the 6-d adaptation strategy had the lowest mean and minimum ruminal fluid pH on 3 consecutive days and were the only treatment group to record pH values below 6.0. Despite ruminal pH declining to levels typically considered low, no other measured parameters indicated compromised fermentation or acidosis. Rather, cows fed alfalfa hay and adapted to wheat over 6 d had greater ECM yields than cows on the 11-d strategy. This was due to the 6-d adaptation strategy increasing the metabolizable energy intake in a shorter period than the 11-d strategy, as substituting wheat for alfalfa hay caused a substantial increase in the metabolizable energy concentration of the diet. We found no difference in ECM between adaptation strategies when PRG hay was fed, as there was no difference in metabolizable energy intake. The higher metabolizable energy concentration and lower intake of the PRG hay meant the increase in metabolizable energy intake with the substitution of wheat was less pronounced for cows consuming PRG hay compared with alfalfa hay. Neither forage type nor adaptation strategy affected time spent ruminating. The higher intakes likely contributed to the lower ruminal pH values from the alfalfa hay treatments. However, both forages allowed the rumen contents to resist the large declines in ruminal pH typically seen during rapid grain adaptation. Depending on the choice of base forage, rapid grain introduction may not result in poor adaptation. In situations where high-energy grains are substituted for a low-energy, high-fiber basal forage, rapid introduction could prove beneficial over gradual strategies.  相似文献   

16.
Two experiments were carried out to test the effects of alfalfa particle size and functional specific gravity (FSG) on chewing activity, digestibility, rumen kinetics, and production of lactating dairy cows fed corn silage based rations. In experiment 1, water-holding capacity (WHC), insoluble dry matter, hydration rate, and FSG changes were determined in alfalfa hay (varying in particle size) and corn silage. Reduction of particle size increased bulk density, FSG, and the rate of hydration, and decreased WHC of alfalfa. In experiment 2, 9 midlactation Holstein dairy cows fed total mixed rations containing 3 sizes of alfalfa hay (with geometric mean 7.83, 4.04, and 1.14 mm) were used in a replicated 3 x 3 Latin square design. The diets contained 20, 20, 35, 7, 7.5, 10, 0.3, 0.1, and 0.1% of DM alfalfa, corn silage, barley, soybean meal, beet pulp, wheat bran, dicalcium phosphate, vitamin premix, and salt, respectively. The geometric means (GM) of rations were 3.34, 2.47, and 1.66 mm in long, medium, and fine alfalfa treatments, respectively. Reduction of particle size increased daily NDF intake (kg), but decreased the proportion of physically effective factor (pef) and physically effective NDF (peNDF) in the ingested rations. Reduction of particle size increased the FSG of rations and intake of DM but reduced digestibility of NDF and ash. Reduction of particle size decreased ruminal mean retention time (RMRT), but increased the ruminal particulate passage rate. Milk and FCM yield were not affected by treatments. The rumen pH, total chewing activity, rumination, eating time, and milk fat were reduced as particle size decreased, but milk protein increased. This study showed that reduction of forage particle size increased bulk density, FSG, and hydration rate of alfalfa and was the most influential factor affecting DMI, milk composition, and chewing behavior. Reduction of forage particle size had minimal impact on digestibility and milk production.  相似文献   

17.
Four multiparous Holstein cows in midlactation were used in a 4 × 4 Latin square to evaluate whether source of forage influenced salivary secretion during eating in lactating dairy cows. The forages were allocated separately from the pelleted concentrates. Cows were offered 1 of 4 forages each period: barley silage, alfalfa silage, long-stemmed alfalfa hay, or chopped barley straw. Saliva secretion was measured during the morning meal by collecting masticates through the rumen cannula at the cardia of each cow. Rate of salivation (213 g/min) was not affected by forage source. However, the forage sources differed in eating rate (g of DM/min), which led to differences in ensalivation of forages (g of saliva/g of DM and g of saliva/g of NDF). On the basis of DM, ensalivation (g of saliva/g of DM) was greatest for straw (7.23) and similar for barley silage, alfalfa silage, and alfalfa hay (4.15, 3.40, and 4.34 g/g of DM, respectively). Higher ensalivation of straw could be accounted for by its higher neutral detergent fiber (NDF) content; ensalivation of NDF (g of saliva/g of NDF) was actually greatest for long-stemmed alfalfa hay (12.4) and similar for the other chopped forages (8.9). Cows consumed concentrate about 3 to 12 times faster than the various forages (DM basis), and ensalivation of concentrate was much lower (1.12 g of saliva/g of DM) than for forages. Feed characteristics such as particle size, DM, and NDF content affect salivary output during eating by affecting the eating rate. Slower eating rate and greater time spent eating may help prevent ruminal acidosis by increasing the total daily salivary secretion in dairy cows.  相似文献   

18.
Two trials were conducted to study the effects of forage intake and physical form on lactating cow performance. In trial 1, four cows in a 4 X 4 Latin square were fed long alfalfa hay at 28, 36, 45, and 53% of total dry matter plus concentrate. Total dry matter intake was not affected by forage percent. Total chewing time and milk fat percentage increased linearly with increasing forage consumption. Maximum 4% fat-corrected milk production occurred when diets contained 27% neutral detergent fiber and 18% acid detergent fiber. In trial 2, four cows in a 4 X 4 Latin square were fed diets of chopped alfalfa hay and concentrate in proportions to supply 27.4% total ration neutral detergent fiber. Mean particle length measured with an oscillating screen particle separator of the chopped hay was .26, .46, .64, and .90 cm. Total dry matter and forage dry matter intakes and total chewing were not influenced by forage mean particle length. Mean particle length did not affect actual milk or 4% fat-corrected milk production. Depression of milk fat percentage was prevented when forage mean particle length was greater than or equal .64 cm. Apparent digestibility of dietary constituents and rate of passage of hay and concentrate was not influenced by forage intake or physical form.  相似文献   

19.
Two experiments were conducted to examine dietary effects of .8% sodium bicarbonate and 1.4 kg/d of alfalfa hay on performance and rumen metabolism of lactating dairy cows fed 50% wheat silage and 50% concentrate (dry basis). In Experiment 1 with 12 midlactation Holsteins in a 4 X 4 Latin square design, intake, milk production, and milk composition were not affected by treatment. Dietary sodium bicarbonate and alfalfa hay did not alter blood, rumen, or fecal pH. Rumen volatile fatty acid pattern was not affected by sodium bicarbonate, but addition of hay resulted in higher molar percentage propionate and lower acetate: propionate ratios. In Experiment 2 with 32 early lactation cows (20 Holsteins and 12 Jerseys) in a complete randomized block design, supplementation of sodium bicarbonate, alfalfa hay, or both did not affect intake, milk production, or milk composition in the first 8 wk of lactation. Blood, rumen, and fecal pH were not affected by treatment. Dietary sodium bicarbonate did not alter ruminal volatile fatty acid profile, whereas addition of hay increased molar proportion acetate and decreased molar proportion butyrate. A shift in rumen fermentation was observed across treatments from wk 1 through 8 postpartum with molar proportions of acetate and butyrate increasing and molar proportion of propionate decreasing.  相似文献   

20.
Three trials were to evaluate effects of sodium bicarbonate in alfalfa hay-based diets. In Experiment 1, four Jersey cows were fed diets of 40:60 chopped alfalfa hay:grain with either 0, .25, .5, and .75% sodium bicarbonate in a 4 X 4 Latin square digestion trial. Dry matter and fiber digestion were unaffected. Volatile fatty acids of ruminal fluid and milk fatty acids were not different. In Experiment 2, two rumen fistulated cattle were fed diets of Experiment 1 for changes of ruminal fluid characteristics at -1, 2, 4, and 8 h postfeeding. Volatile fatty acids of ruminal fluid and hydrogen ion concentration were not different across time with sodium bicarbonate. In Experiment 3, four Holstein cows with rumen cannulae were fed diets of 30:70 chopped alfalfa hay:grain with 0, .4, .8, and 1.2% sodium bicarbonate in a 4 X 4 Latin square. Dry matter and fiber digestion were unaffected. Ruminal fluid samples were collected at -1, 3, 6, and 9 h postfeeding. Volatile fatty acids were different only at 6 h with 0 and 1.2% sodium bicarbonate diets displaying lower concentrations. Rate of increase of hydrogen ion concentration was greater for diets containing 0 and .4% compared with .8 and 1.2% sodium bicarbonate between -1 and 6 h. Milk fatty acid composition, ruminal liquid dilution rate, and dry matter disappearance from nylon bags suspended in the rumen were not affected by sodium bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号