首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

2.
Electron beam irradiation was applied to prepare poly (vinyl alcohol) and poly (acrylic acid) P (PVA/AAc) containing nickel and silver nanoparticles. The prepared P (PVA/AAc)–Ni and P (PVA/AAc)–Ag nanoparticles were characterized by Fourier-transform infrared, UV–Visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscope (TEM). The electrical conductivity and thermal gravimetrical analysis (TGA) have been investigated. Bacterial sensitivity toward nickel and silver nanoparticles was studied. The XRD and TEM confirmed that by increasing the Ni or Ag contents from 10 to 150?mmol in the copolymers, the metal particle size increases from 27.6 to 45.6?nm for Ni and from 14.8 to 37.4?nm for Ag. Meanwhile, the mean size particle increases from 33.02 to 45.05?nm for Ni and from 15.5 to 44.03?nm for Ag. The electrical conductivity of the polymer containing Ag is higher than that of Ni and it increased by increasing the metal content. The TGA studies confirmed that, the thermal stability increase by the introduction of metal into polymeric complex. Bacterial sensitivity to metal nanoparticles was found to vary depending on the microbial species. Disc diffusion studies with P. aeruginosa, E. coli and K. pneumoniae revealed greater effectiveness of the silver nanoparticles compared to the nickel nanoparticles, S. aureus depicted the highest sensitivity to nanoparticles compared to the other strains and was more adversely affected by the nickel nanoparticles.  相似文献   

3.
A series of PVA/PVP based hydrogels at different compositions were prepared by gamma irradiation. The gel fraction degree of swelling were investigated. Highly stable and uniformly distributed silver nanoparticles have been obtained onto hydrogel networks. The morphology and structure of (PVA/PVP) hydrogel and dispersion of the silver nanoparticles in the polymeric matrix were examined by scanning electron microscopy (SEM) and infrared spectroscopy (FT-IR), respectively. The formation of silver nanoparticles has been confirmed by ultraviolet visible (UV–vis) spectroscopy. A strong characteristic absorption peak was found to be around 420 nm for the silver nanoparticles in the hydrogel nanocomposite. The X-ray diffraction pattern confirmed the formation of silver nanoparticles with average particle size of 12 nm. The diameter distribution of silver nanoparticles was determined by dynamic light scattering DLS. Transmission electron microscope (TEM) showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network and the mean size of silver nanoparticles ranging is 23 nm. The good swelling properties and antibacterial of PVA/PVP-Ag hydrogel suggest that it can be a good candidate as wound dressing.  相似文献   

4.
Our previous work demonstrated the antibacterial activity of plasma sprayed zinc-modified calcium silicate coating. To enhance the bactericidal effect, in this paper, silver and zinc co-incorporated calcium silicate coating (ZC0.3-Ag) was fabricated onto Ti–6Al–4V substrate via plasma spraying technology. The coating was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements. Transmission electron microscopy (TEM) showed that the silver nanoparticles 10–100 nm in diameter were randomly distributed in the amorphous matrix after the silver modification. In chemical durability test, the ZC0.3-Ag coating presented improved chemical stability when compared with that of the original and Ag-doped coating. In vitro antibacterial study indicated that the inactivation of bacteria (Staphylococcus aureus and Escherichia coli) on the ZC0.3-Ag coating was significantly enhanced compared to that on the Zn-modified coatings. The enhanced bactericidal activity was attributed to the addition of silver. Cytocompatibility evaluation demonstrated that the ZC0.3-Ag coating surface supported the adhesion and spreading of human mesenchymal stem cells (hMSCs), and no significant cytotoxicity was observed for the coating.  相似文献   

5.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

6.
The adsorption of the cationic dyes Rhodamine B (RB) and Crystal Violet (CV) on polyacrylamide/poly(acrylic acid) (poly(AAm/AAc), 25:25 % weightwise) and polyacrylamide/poly(sodium acrylate) (poly(AAm/AAcNa), 25:25 % weightwise) hydrogels was studied, employing the Langmuir and Freundlich isotherms. The results of swelling tests at pH 5.5 indicate that poly(AAm/AAcNa) hydrogel shows maximum percentage swelling (%S) was 4400 %. Moreover, the results show that the adsorption capacity is pH‐ and concentration‐dependent. At pH >5 adsorption of RB and CV increases due to ionization of ? COOH and ? COONa groups of (poly(AAm/AAc) and (poly(AAm/AAcNa) and interactions with the cationic groups of the dyes. However, at pH lower than 5, adsorption is still high, which can be explained by considering the formation of hydrogen bonds between the amino groups of the dyes and the ? COOH groups of the polymeric hydrogels. Moreover, the kinetics of adsorption follows a first‐order equation. Furthermore, scanning electron microscopy (SEM) micrographs of polymeric hydrogels doped with CV and RB have morphological differences from the pure form. Our data show that Rhodamine B adsorbs more efficiently on both polyacrylamide/poly(acrylic acid) and polyacrylamide/poly(sodium acrylate) hydrogels than CV. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A series of temperature‐ and pH‐responsive hydrogels were prepared from acrylic acid (AAc), acrylamide (AAm), oligo(ethylene glycol)monoacrylate (OEGMA), and oligo(ethylene glycol)diacrylate by varying the AAc:AAm molar ratio and the OEGMA content. Phase‐transition temperatures and swelling ratios of the obtained poly(AAc‐co‐AAm)‐graft‐OEG gels were measured as a function of temperature and pH. At pH < 5, the obvious transition temperatures ranging from 5 to 35°C were obtained as the AAc : AAm molar ratio was varied. The highest transition temperature was obtained at the AAc : AAm ratios of 5 : 5 and 6 : 4, and the sharp transition curves were observed at the AAc : AAm ratios from 5 : 5 to 8 : 2. The transition temperature further increased with increasing OEGMA content. It was suggested that OEG graft chains with a large mobility played an important role for the formation of hydrogen bonding in the hydrogels. The gels prepared here showed obvious reproducibility of the phase transition in response to temperature changes, which suggests the feasibility of their practical applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 798–805, 2001  相似文献   

8.
A pH-responsive copolymer hydrogel was synthesized based on methyl methacrylate (MMA) and methacrylic acid (MAA) as monomers, and was adopted as a nanoreactor for assembling Ag nanoparticles. Fourier transform infrared spectroscope (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), UV-visible spectroscopy (UV-Vis) and thermogravimetric analysis (TGA) were used to fully characterize the formation of silver nanoparticles in P(MMA-co-MAA) hydrogels. The experimental results showed that the P(MMA-co-MAA) hydrogels assume a three-networks architecture in morphologies, and that nearly spherical Ag nanoparticles are formed in these hydrogel networks; the size of these Ag nanoparticles varies with the system composition. The swelling kinetics investigations demonstrated that the equilibrium swelling ratio (ESR) of the P(MMA-co-MAA)/Ag hydrogels depended on the content of the MAA and pH of the buffer solutions, and the ESR values were reduced with increasing MAA contents. The antibacterial properties against both S. aureus and B. subtilis bacteria demonstrated that the P(MMA-co-MAA)/silver nanocomposite hydrogels had higher antimicrobial efficacy than the pure P(MMA-co-MAA) counterparts. Therefore, the nanocomposite hydrogels turned out to be a potentially smart material in the range of applications of antibacterial activity.  相似文献   

9.
《Ceramics International》2017,43(2):1843-1852
A series of calcined hydrotalcite/TiO2-Ag (HTC/TiO2-Ag) composites with different silver (Ag) contents were successfully prepared and investigated as a catalyst for the photodegradation of phenol using UV–vis light (λ>300 nm). The Ag nanoparticles were deposited on the surface of TiO2 (TiO2-Ag) through photodeposition method. The TiO2-Ag nanoparticles were supported on hydrotalcite (HT) by the co-precipitation method at variable pH (HT/TiO2-Ag), and then calcined at 500 °C to obtain the HTC/TiO2-Ag composites. The composites were characterized by inductively coupled plasma mass spectrometry (ICP-MS), N2 adsorption/desorption (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance spectra (DRS). Results show that there is an optimum silver ratio to obtain the highest photocatalytic performance in the HTC/TiO2-Ag photocatalyst which is 2 wt%, and is assigned as HTC/TiO2-Ag(2). The association of silver nanoparticles on TiO2 enhanced photocatalytic activity of the bare semiconductor composite. Only 56% of phenol was photodegraded when photodegradation was performed with HTC/TiO2, whereas ~100% was photodegraded using HTC/TiO2-Ag(2). The data gathered from the photocatalytic degradation of phenol were successfully fitted to Langmuir-Hinshelwood model, and can be described by pseudo-first order kinetics. The results showed the HTC/TiO2-Ag(2) as efficient photocatalyst, low cost, separable from solution by sedimentation, and reusable. The superior performance of HTC/TiO2-Ag(2) composite photocatalyst may be attributed to the synergic catalytic effect between silver and TiO2, dispersion of TiO2-Ag(2) nanoparticles supported on calcined hydrotalcite, and the calcined hydrotalcite like photocatalyst.  相似文献   

10.
The development of eco-friendly and nontoxic processes for the synthesis of nanoparticles is one of the most important discussed issues in nanotechnology science. This study reports the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of leaf, stem, and root of Avicennia marina, the native and dominant mangrove plant in southern Iran. Among the different plant parts, the extract of leaves yielded the maximum synthesis of AgNPs. Synthesized AgNPs were investigated using UV–visible spectrophotometry, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Absorption spectrum in 420?nm confirmed the synthesis of AgNPs. TEM images revealed that the synthesized AgNPs had the same spherical morphology with a size range between 0 and 75?nm. The distribution size histogram indicated that the most frequent particles were in the range of 10–15?nm and the mean size of nanoparticles was 17.30?nm. The results of SEM image showed nanoparticles with a size range between 15 and 43?nm. XRD pattern indicated the crystalline nature of synthesized nanoparticles. EDS results confirmed the presence of elements like silver, carbon, chlorine, nitrogen, and oxygen in the nanoparticles produced from leaf extract. Silver had the maximum percentage of formation, 51.6%. FTIR indicated the presence of different functional groups such as amines, alcohol, alkanes, phenol, alkyl halides, and aromatic loops in the synthesis process. Green biosynthesis of AgNPs using aqueous extract of native A. marina appears rapid, reliable, nontoxic, and eco-friendly.  相似文献   

11.
The present investigation reports the facile, reproducible and eco-friendly biological synthesis of nano silver using Ficus Hispida leaf extract (FHLE) as a reductant. The properties of the synthesized silver nanoparticles (Ag-NP’s) is characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), UV–visible spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction studies. The synthesized Ag-NPs are found to have spherical shape with average particle size in the range of 50–100 nm. The XRD studies and selected area electron diffraction pattern of TEM images confirm the face cantered cubic structure of biosynthesised silver nanoparticles. The DFT studies reveal that the stigmasterol present in FHLE is responsible for leaf extract to behave as a reducing agent for reduction of Ag+ ions into Ag0. The antitumor studies against DLA cell lines of the biosynthesized Ag-NPs is found to have 100% inhibition with concentration of 200 µg/ml of Ag-NP’s.  相似文献   

12.
A series of acrylamide (AAm)-based hydrogels containing acrylic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and vinyl imidazole (VI) comonomers were prepared by free radical polymerization. Silver nanoparticles were loaded to hydrogel systems through in situ reduction of silver nitrate in the presence of sodium borohydride as a reducing agent. The synthesized hydrogels and their composites were characterized using FTIR, scanning electron microscopy, EDX, and EDX-mapping. The antimicrobial activity of hydrogel–silver composite was determined using well agar and broth dilution tests. In the first stage, four different hydrogel–silver composites were evaluated against six different microorganisms using the well agar technique. The most effective hydrogel–silver composite among all tested was poly(AAm-co-VI-co-AMPS)-Ag, while the most sensitive and resistant microorganisms among all tested were Staphylococcus cerevisiae and S. aureus, respectively. Poly(AAm-co-VI-co-AMPS)-Ag composite was used in modeling the inhibition kinetic of Escherichia coli. The present study displays that hydrogel–silver composite has considerable antimicrobial activity, which deserves further investigation for use in clinic application and industrial processing.  相似文献   

13.
Silver/polyaniline (Ag-PANi) nanocomposites were prepared via in situ reduction of silver in aniline by mild photolysis performed with short wavelength (365 nm) radiation from UV lamp for 12 h. Reduction of the silver in aqueous aniline leads to the formation of silver nanoparticles which in turn catalyze oxidation of aniline into polyaniline. A slightly broadened X-ray diffraction (XRD) pattern suggests small particle which was size consistent with cubic silver nanoparticles. The UV–Vis absorption revealed that the bands at about 400–420 nm due to benzonoid ring of the polyaniline are overlapped and blue-shifted due to the presence of silver nanoparticles in powdered state. Scanning electron microscopy (SEM) of the silver/polyaniline (Ag-PANi) nanocomposite showed a size distribution with nanofibers and granular morphology of silver nanoparticles. Our findings are not only the promising approach for electro-catalytic hydrazine oxidation but also utilized in the other bio-sensing applications.  相似文献   

14.
A novel silver complex, Ag(PPh3)2(2-pyCOO)·0.5H2O·0.5C2H6O, was prepared from Ag(CH3COO)(PPh3)2 and 2-pyridinecarboxylic acid and after characterization by elemental analysis, infrared, 1H and 31P NMR spectroscopes, and X-ray crystallography, was used as a precursor for the preparation of silver nanoparticles. The silver nanoparticles were obtained by thermolysis of the silver complex at 350 °C in the presence of oleic acid as a surfactant. Resulting silver nanoparticles were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The formation of silver nanoparticles with an average size of 60 nm and spherical morphology was confirmed by SEM. Bulk silver particles were obtained instead of silver nanoparticles when thermolysis of the silver complex was carried out in the absence of oleic acid.  相似文献   

15.
In this research, an antibiotic was loaded in the composites of polyethylene glycol (PEG), acrylamide (AAm) and acrylic acid (AAc) hydrogels matrices and their drug deliveries were tested. Effect of some parameters on the drug delivery was checked by UV‐spectrophotometer. Temperature enhancement considerably increased hydrogel swelling and the drug release in the AAc and AAm. A dynamic model based on the Maxwell–Stefan equation was developed to model the drug delivery of hydrogels. COMSOL software was also applied to simulate buffer diffusion inside the hydrogels.  相似文献   

16.
Carboxymethyl cellulose hydrogels were synthesized by grafting of acrylamide (AAm) and methacrylic acid (MAAc) individually with different concentrations onto carboxymethyl cellulose (CMC) using direct radiation grafting technique. It was found that for both Poly(CMC/AAm) and Poly(CMC/MAAc), the grafting yield and grafting ratio increase with the increasing monomer concentration. Also, it is noted that both grafting ratio and grafting yield of Poly(CMC/AAm) are higher than that of Poly(CMC/MAAc). The effect of different monomer concentrations on gel (%) and swelling behavior was studied. It is found that the increasing monomer concentration increases gel (%). For Poly(CMC/AAm) hydrogels, the swelling behavior decreases with increasing AAm concentration due to high crosslinking hydrogel formation, while as MAAc content increases, swelling behavior increases up to Poly(CMC/MAAc) 1:25 wt%. Swelling kinetics and diffusion mechanism indicate that the water penetration obeys non-Fickian transport mechanism. The structures and properties of the original CMC and the prepared Poly(CMC/MAAc) and Poly(CMC/AAm) were characterized using different analytical tools such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM). This study provides a solution to the discharge of different pollutants from wastewater. The adsorption capacity of Poly(CMC/MAAc) and Poly(CMC/AAm) hydrogels toward heavy metals, Cu+2 and Co+2, dyes such as acid blue dye and methyl green, and organic contaminants such as 4-chlorophenol and 2,4-Dichlorophenoxy acetic acid has been investigated.  相似文献   

17.
Functional ceramic composites consisting of a dispersion of silver nanoparticles in a silicon (carbon)nitride matrix (nc-Ag/Si(C)N) were prepared via the polymer–ceramic route. Mixtures of 3 wt% as-synthesized Ag nanoparticles with a commercial polysilazane were pyrolysed under flowing nitrogen and/or ammonia. Bulk samples as well as coatings were investigated. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal analysis (TGA, DTA), absorption spectroscopy (UV–vis) and infra red (IR) spectroscopy were used to characterize the products. The results indicate that the silver nanoparticles do not influence the cross-linking and pyroylsis process of the polysilazane precursor. At temperatures in the range of 800–1000 °C (H)Si(C)N matrices are obtained, which contain silver particles with an average size of 5–7 nm. Antibacterial tests on the pyrolysed material revealed strong activity against Escherichia coli and Staphylococcus aureus, suggesting the composites to be promising candidates for applications in fields such as the biomedical or food industries.  相似文献   

18.
《Ceramics International》2017,43(16):13786-13790
Mesoporous Ag/ZnO nanohybrid material has been successfully synthesized using simple and green route via sodium alginate media. The as-synthetized nanomaterial was structurally characterized using various techniques such as X-ray powder diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and N2 adsorption-desorption measurements (BET). The Ag/ZnO nanoparticles were quasi-spherical, crystalline with a size ranging from 40 to 50 nm. In addition, characterization results confirmed that calcined Ag/ZnO nanomaterial sample was stable and mainly consisting of both hexagonal ZnO and cubic silver nanoparticles.  相似文献   

19.
Removal of organic dyes from waste water has received a significant attention in recent years. In this work, a set of nanocomposite hydrogels (NHs) were prepared and their capacity to absorb crystal violet (CV), a cationic dye, and acid yellow‐23 (AY), an anionic dye, from aqueous solutions was determined. NHs were prepared by in situ formation of Fe3O4 magnetic nanoparticles (MNPs) inside poly(acrylamide‐co‐4‐styrene sulfonic acid sodium salt) (P[AAm‐co‐SSA]) hydrogel matrices. The dye absorption capacity of the magnetic NHs (MNHs) was compared with simple hydrogels (hydrogels or SHs) without the MNPs The prepared hydrogels were characterized by FTIR, XRD, thermogravimetric analysis, high resolution TEM, field emission SEM, and vibrating sample magnetometer measurement. From HRTEM, it was confirmed that the prepared MNPs in hydrogel matrices were in the size range of about 8 to 10 nm. The MNHs showed greater swelling behavior as well as greater removal efficiency of cationic dye from aqueous solutions in comparison to the SHs. With increase of SSA mole percentage, dye removal efficiency was also increased for both types of hydrogels. The present study indicates that the hydrogels containing MNPs can be potentially used as an efficient absorbent material for removal of cationic dyes from waste water. POLYM. ENG. SCI., 56:776–785, 2016. © 2016 Society of Plastics Engineers  相似文献   

20.
The present work involves the development of hydrogel magnetic nanocomposites for protein purification and heavy metal extraction applications. The magnetic nanoparticles (MNPs) were prepared in situ in poly(acrylamide)-gum acacia (PAM-GA) hydrogels. The formation of magnetic nanoparticles in the hydrogel networks was confirmed by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Scanning electron (SEM) microscopy studies revealed the formation of MNPs throughout the hydrogel networks. The average size of MNPs formed in the hydrogel networks was 3–5 nm as determined by transmission electron microscopy (TEM). The thermal properties of the hydrogel magnetic nanocomposites were evaluated by dynamic scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The magnetic properties of the developed hydrogel magnetic nanocomposites were determined by a vibrating sample magnetometer (VSM). The swelling properties of the hydrogel and the hydrogel magnetic nanocomposites were studied in detail. The hydrogel magnetic nanocomposites are utilized for the removal of toxic metal ions such as Co(II), Ni(II), and Cu(II) and for protein purification. The results confirm that the hydrogel magnetic nanocomposites exhibit superior extraction properties to hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号