首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uptake of uracil by the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. Uracil permease located at the cell surface is subject to two covalent modifications: phosphorylation and ubiquitination. The ubiquitination step is necessary prior to permease endocytosis and subsequent vacuolar degradation. Here, we demonstrate that a PEST-like sequence located within the cytoplasmic N terminus of the protein is essential for uracil permease turnover. Internalization of the transporter was reduced when some of the serines within the region were converted to alanines and severely impaired when all five serines within the region were mutated or when this region was absent. The phosphorylation and degree of ubiquitination of variant permeases were inversely correlated with the number of serines replaced by alanines. A serine-free version of this sequence was very poorly phosphorylated, and elimination of this sequence prevented ubiquitination. Thus, it appears that the serine residues in the PEST-like sequence are required for phosphorylation and ubiquitination of uracil permease. A PEST-like sequence in which the serines were replaced by glutamic acids allowed efficient permease turnover, suggesting that the PEST serines are phosphoacceptors.  相似文献   

2.
To investigate the uracil biosynthetic pathway of the yeast Saccharomyces exiguus Yp74L-3, uracil auxotrophic mutants were isolated. Using conventional genetic techniques, four mutant genes concerned in uracil biosynthesis were identified and denoted as ura1, ura2, ura3, and ura4. Mutations in the URA3 and URA4 genes were specifically selected with 5-fluoroorotic acid (5-FOA). Vector plasmids containing the URA3 gene and an autonomously replicating sequence (ARS) of S. cerevisiae produced sufficient amounts of Ura+ transformants from the ura4 mutant of S. exiguus. This fact indicates that the S. exiguus URA4 gene encodes orotidine-5'-phosphate decarboxylase (OMP decarboxylase) and demonstrates that vector plasmids for S. cerevisiae are also usable in S. exiguus.  相似文献   

3.
The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Delta) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.  相似文献   

4.
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.  相似文献   

5.
Ubiquitin conjugating enzymes (UBCs) are a family of proteins directly involved in ubiquitination of proteins. Ubiquitination is known to be involved in control of a variety of cellular processes, including cell proliferation, through the targeting of key regulatory proteins for degradation. The ubc9 gene of the yeast Saccharomyces cerevisiae (Scubc9) is an essential gene which is required for cell cycle progression and is involved in the degradation of S phase and M phase cyclins. We have identified a human homolog of Scubc9 (termed hubc9) using the two hybrid screen for proteins that interact with the human papillomavirus type 16 E1 replication protein. The hubc9 encoded protein shares a very high degree of amino acid sequence similarity with ScUBC9 and with the homologous hus5+ gene product of Schizosaccharomyces pombe. Genetic complementation experiments in a S.cerevisiae ubc9ts mutant reveal that hUBC9 can substitute for the function of ScUBC9 required for cell cycle progression.  相似文献   

6.
The biological methylation cytosine bases in DNA is central to such diverse phenomena as restriction and modification in bacteria, repeat induced point-mutation (RIPing) in fungi and for programming gene expression patterns in vertebrates. Structural studies on HhaI DNA methyltransferase, together with the sequence comparisons of around 40 cytosine-specific DNA methyltransferases, have recently provided a molecular framework for understanding the mechanism of action of the related group of enzymes that catalyse this base modification. There are, however, a number of organisms, including Saccharomyces cerevisiae, Schizosaccharomyces pombe and Drosophila melanogaster, which have no detectable DNA methylation. Here we report that the product of the pmt1 gene recently identified in S. pombe, which contains most of the primary structure elements of a typical cytosine-specific DNA methyltransferase, is catalytically inert owing to the insertion of a Ser residue between the Pro-Cys motif found at the active site of all such DNA methyltransferases. Following deletion of this Ser residue, catalytic activity is restored and, using a range of DNA binding experiments, it is shown that the enzyme recognises and methylates the sequence CC(A/T)GG, the same sequence that is modified by the product of the Escherichia coli dcm gene. The pmt gene of S. pombe therefore encodes a pseudo DNA methyltranferase, which we have called psiM.SpoI.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, Na+ efflux is mediated by the Ena1 ATPase, and the expression of the ENA1 gene is regulated by the Ppz1 and Ppz2 Ser/Thr protein phosphatases. On the contrary, in the fission yeast Schizosaccharomyces pombe, effective output of Na+ is attributed to the H+/Na+ antiporter encoded by the sod2 gene. We have isolated a S. pombe gene (pzh1) that encodes a 515-amino-acid protein that is 78% identical, from residue 193 to the COOH terminus, to the PPZ1 and PPZ2 gene products. Bacterially expressed Pzh1p shows enzymatic characteristics virtually identical to those of recombinant Ppz1p. When expressed in high-copy number from the PPZ1 promoter, the pzh1 ORF rescues the caffeine-induced lytic defect and slightly decreases the high salt tolerance of S. cerevisiae ppz1delta mutants. Disruption of pzh1 yields viable S. pombe cells and has virtually no effect on tolerance to caffeine or osmotic stress, but it renders the cells highly tolerant to Na+ and Li+, and hypersensitive to K+. Although lack of pzh1 results in a 2-3-fold increase in sod2 mRNA, the pzh1 mutation significantly increases salt tolerance in the absence of the sod2 gene, suggesting that the phosphatase also regulates a Sod2-independent mechanism. Therefore, the finding of a PPZ-like protein phosphatase involved in the regulation of salt tolerance in fission yeast reveals unexpected aspects of cation homeostasis in this organism.  相似文献   

8.
The synthesis of mevalonate, a molecule required for both sterol and isoprene biosynthesis in eukaryotes, is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Using a gene dosage approach, we have isolated the gene encoding HMG-CoA reductase hmgl+, from the fission yeast Schizosaccharomyces pombe (Accession Number L76979). Specifically, hmgl+ was isolated on the basis of its ability to confer resistance to lovastatin, a competitive inhibitor of HMG-CoA reductase. Gene disruption analysis showed that hmgl+ was an essential gene. This result provided evidence that, unlike Saccharomyces cerevisiae, S. pombe contained only a single functional HMG-CoA reductase gene. The presence of a single HMG-CoA reductase gene was confirmed by genomic hybridization analysis. As observed for the S. cerevisiae HMGlp, the hmgl+ protein induced membrane proliferations known as karmellae. A previously undescribed 'feed-forward' regulation was observed in which elevated levels of HMG-CoA synthase, the enzyme catalysing the synthesis of the HMG-CoA reductase substrate, induced elevated levels of hmgl+ protein in the cell and conferred partial resistance to lovastatin. The amino acid sequences of yeast and human HMG-CoA reductase were highly divergent in the membrane domains, but were extensively conserved in the catalytic domains. We tested whether the gene duplication that produced the two functional genes in S. cerevisiae occurred before or after S. pombe and S. cerevisiae diverged by comparing the log likelihoods of trees specified by these hypotheses. We found that the tree specifying post-divergence duplication had significantly higher likelihood. Moreover, phylogenetic analyses of available HMG-CoA reductase sequences also suggested that the lineages of S. pombe and S. cerevisiae diverged approximately 420 million years ago but that the duplication event that produced two HMG-CoA reductase genes in the budding yeast occurred only approximately 56 million years ago. To date, S. pombe is the only unicellular eukaryote that has been found to contain a single HMG-CoA reductase gene. Consequently, S. pombe may provide important opportunities to study aspects of the regulation of sterol biosynthesis that have been difficult to address in other organisms and serve as a test organism to identify novel therapies for modulating cholesterol synthesis.  相似文献   

9.
10.
11.
Schizosaccharomyces pombe strains containing direct repeats of adeó heteroalleles separated by a functional uro4+ gene, and a DNA site for induction of a double-strand break (DSB), have been used to analyze pathways of spontaneous and DSB-induced intrachromosomal mitotic recombination. These substrates yield Ade+ Ura+ convertants or Ade+ Ura- deletions, by the DSB/gap repair and single-strand annealing (SSA) pathways of recombination, respectively. In S. cerevisiae, the DSB/gap repair pathway is RAD52 dependent, and the RAD1 and RAD10 genes are involved in the SSA pathway. We have sought to understand the genetic control of the pathways of mitotic recombination in S. pombe by determining the effects of mutations in six rad genes involved in DNA repair: rad1 and rad3 involved in checkpoint control in response to unreplicated or damaged DNA; rad5 (homologue of S. cerevisiae RAD3) and rad10 (homologue of S. cerevisiae RAD1) involved in nucleotide excision repair; rad21 and rad22 (homologue of S. cerevisiae RAD52) involved in the repair of ionizing radiation-induced DNA damage. The results suggest that the genetic control of the pathways of spontaneous and DSB-induced mitotic intrachromosomal recombination in S. pombe is different from that in S. cerevisiae.  相似文献   

12.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin-protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4(+)-induced inactivation. An in vivo isolated mutation (gap1pgr) causes a single Glu-->Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast alpha-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4(+)-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4(+)-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

13.
14.
15.
FEN-1 proteins are a family of nucleases essential for lagging strand DNA synthesis. A gene with sequence similarity to FEN-1 protein-encoding genes, rad2 +, has been identified in Schizosaccharomyces pombe . We report the overexpression, purification, and character-ization of the putative S.pombe FEN-1 homolog, Rad2p. A GST-Rad2p fusion protein was over-expressed in Saccharomyces cerevisiae and purified to near homogeneity by GST affinity chromatography. Although Rad2p had been previously classified as a putative FEN-1 protein based on amino acid homology, there has been no biochemical evidence demonstrating flap endonuclease activity. DNA cleavage analysis of several different oligodeoxynucleotide structuresindicates that GST-Rad2p possesses both 5'-flap endonuclease and 5'-->3' double-stranded DNA exo-nuclease activities. GST-Rad2p incises a 5'-flap and a 5'-pseudo-Y structure one base 3' of the branch point in the duplex region and also degrades double-stranded DNA. This is the first report on the biochemical characterization of S.pombe Rad2p. The potential roles of Rad2p in DNA excision repair and other nucleic acid reactions are discussed.  相似文献   

16.
Dolichol phosphate mannose (Dol-P-Man), formed upon transfer of Man from GDPMan to Dol-P, is a mannosyl donor in pathways leading to N-glycosylation, glycosyl phosphatidylinositol membrane anchoring, and O-mannosylation of protein. Dol-P-Man synthase is an essential protein in Saccharomyces cerevisiae. We have cloned cDNAs encoding human and Schizosaccharomyces pombe proteins that resemble S. cerevisiae Dol-P-Man synthase. Disruption of the gene for the S. pombe Dol-P-Man synthase homolog, dpm1(+), is lethal. The known Dol-P-Man synthase sequences can be divided into two classes. One contains the S. cerevisiae, Ustilago maydis, and Trypanosoma brucei enzymes, which have a COOH-terminal hydrophobic domain, and the other contains the human, S. pombe, and Caenorhabditis synthases, which lack a hydrophobic COOH-terminal domain. The two classes of synthase are functionally equivalent, because S. cerevisiae DPM1 and its human counterpart both complement the lethal null mutation in S. pombe dpm1(+). The findings that Dol-P-Man synthase is essential in yeast and that the Ustilago and Trypanosoma synthases are in a different class from the human enzyme raise the possibility that Dol-P-Man synthase could be exploited as a target for inhibitors of pathogenic eukaryotic microbes.  相似文献   

17.
18.
ABC14.5 (Rpb8) is a eukaryotic subunit common to all three nuclear RNA polymerases. In Saccharomyces cerevisiae, ABC14.5 (Rpb8) is essential for cell viability, however its function remains unknown. We have cloned and characterised the Schizosaccharomyces pombe rpb8(+) cDNA. We found that S.pombe rpb8, unlike the similarly diverged human orthologue, cannot substitute for S.cerevisiae ABC14. 5 in vivo. To obtain information on the function of this RNA polymerase shared subunit we have used S.pombe rpb8 as a naturally altered molecule in heterologous expression assays in S.cerevisiae. Amino acid residue differences within the 67 N-terminal residues contribute to the functional distinction of the two yeast orthologues in S.cerevisiae. Overexpression of the S.cerevisiae largest subunit of RNA polymerase III C160 (Rpc1) allows S.pombe rpb8 to functionally replace ABC14.5 in S.cerevisiae, suggesting a specific genetic interaction between the S.cerevisiae ABC14.5 (Rpb8) and C160 subunits. We provide further molecular and biochemical evidence showing that the heterologously expressed S.pombe rpb8 molecule selectively affects RNApolymerase III but not RNA polymerase I complex assembly. We also report the identification of a S.cerevisiae ABC14.5-G120D mutant which affects RNA polymerase III.  相似文献   

19.
We have isolated the Candida albicans HIS4 (CaHIS4) gene by complementation of a his4-34 Saccharomyces cerevisiae mutant. The sequenced DNA fragment contains a putative ORF of 2514 bp, whose translation product shares a global identity of 44% and 55% to the His4 protein homologs of S. cerevisiae and Kluyveromyces lactis, respectively. Analysis of CaHIS4 sequence suggests that, similarly to S. cerevisiae HIS4, it codes for a polypeptide having three separate enzymatic activities (phosphoribosyl-AMP cyclohydrolase, phosphoribosyl-ATP pyrophosphohydrolase and histidinol dehydrogenase) which reside in different domains of the protein. A C. albicans his4 strain is complemented with this gene when using a C. albicans-S. cerevisiae-Escherichia coli shuttle vector, thus enabling the construction of a host system for C. albicans genetic manipulation. In addition, upstream of the sequenced CaHIS4 sequence, we have found the 3'-terminal half of a gene encoding a PEX5-like protein.  相似文献   

20.
Casein kinase II from the yeast Yarrowia lipolytica is a heterotetramer of the form alpha alpha' beta 2. We report on the cloning and sequencing of a partial cDNA and of the complete genomic DNA coding for the catalytic alpha subunit of the casein kinase II from this yeast species. The sequence of the gene coding for this enzyme has been analyzed. No intron was found in the gene, which is present in a single copy. The deduced amino acid sequence of the gene shows high similarity with those of alpha subunit described in other species, although, uniquely, Y. lipolytica CKII alpha lacks cysteines. We find that the alpha subunit sequence of Y. lipolytica CKII is shown greater homology with the corresponding protein from S. pombe than with that from S. cerevisiae. We have analyzed CKII alpha expression and CKII alpha activity. We show that expression of this enzyme is regulated. The catalytic subunit is translated from a single mRNA, and the enzyme is present at a very low level in Y. lipolytica, as in other yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号