首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent evolution of wireless sensor networks have yielded a demand to improve energy-efficient scheduling algorithms and energy-efficient medium access protocols. This paper proposes an energy-efficient real-time scheduling scheme that reduces power consumption and network errors on dual channel networks. The proposed scheme is based on a dynamic modulation scaling scheme which can scale the number of bits per symbol and a switching scheme which can swap the polling schedule between channels. Built on top of EDF scheduling policy, the proposed scheme enhances the power performance without violating the constraints of real-time streams. The simulation results show that the proposed scheme enhances fault-tolerance and reduces power consumption.  相似文献   

2.
Dynamic power management (DPM) and dynamic voltage scaling (DVS) are crucial techniques to reduce the energy consumption in embedded real-time systems. Many previous studies have focused on the energy consumption of the processor or I/O devices. In this paper, we focus on the problem of energy management integrating DVS and DPM techniques for periodic embedded real-time applications with rate monotonic (RM) policy and present a system level fixed priority energy-efficient scheduling (SLFPEES) algorithm. The SLFPEES algorithm consists of I/O device scheduling and job scheduling. I/O device scheduling is based on the dynamic power management with rate monotonic (DPM-RM) policy which puts devices into the sleep state when the idle interval is larger than devices break even time. Job scheduling is based on the RM policy and uses stack resource protocol (SRP) to guarantee exclusive access to the shared resources. For energy efficiency, the SLFPEES algorithm schedules the task with a lower speed and a higher speed. The experimental result shows that the SLFPEES algorithm can yield significantly energy savings with respect to the existing techniques.  相似文献   

3.
时延受限且能量高效的无线传感网络跨层路由   总被引:4,自引:0,他引:4  
王辛果  张信明  陈国良 《软件学报》2011,22(7):1626-1640
如何通过网络的多跳中继把传感器节点收集的信息快速、高效地传输至基站,是无线传感器网络的基本问题.研究发现,MAC(media access control)层的睡眠调度和无线信道的不规则性均会对路由协议的效率产生较大影响.虽然传统分层设计的网络协议有着模块化的优点,但各层之间的相互独立却导致网络的整体性能不能达到最优.此外,已有协议通常采用牺牲时延以提高能量效率的方法,会给时延敏感系统带来不能容忍的端到端时延.提出一种时延受限且能量高效的跨层路由协议(delay-constrained and energy-efficient cross-layer routing,简称DECR),该协议在做出路由决定时考虑MAC层以及链路层的相关信息,其目标是在将端到端时延控制到低于预定上界的前提下最优化节点的能量效率.理论分析和实验结果表明,所提出的跨层路由协议具有较好的性能.  相似文献   

4.
Wireless sensor network(WSN)is effective for monitoring the target environment,which consists of a large number of sensor nodes of limited energy.An efficient medium access control(MAC)protocol is thus imperative to maximize the energy efficiency and performance of WSN.The most existing MAC protocols are based on the scheduling of sleep and active period of the nodes,and do not consider the relationship between the load condition and performance.In this paper a novel scheme is proposed to properly determine the duty cycle of the WSN nodes according to the load,which employs the Q-leaming technique and function approximation with linear regression.This allows low-latency energy-efficient scheduling for a wide range of traffic conditions,and effectively overcomes the limitation of Q-learning with the problem of continuous state-action space.NS3 simulation reveals that the proposed scheme significantly improves the throughput,latency,and energy efficiency compared to the existing fully active scheme and S-MAC.  相似文献   

5.
《Computer Networks》2007,51(10):2594-2615
Traditional MAC and routing protocols, which are primarily designed for homogeneous networks wherein all nodes transmit with the same power, suffer performance degradations when employed in power heterogeneous networks. The observed degradations are due to link asymmetry, which arises as high power nodes that do not sense the transmissions of low power nodes can potentially initiate transmissions that interfere with the low power communications. Link layer asymmetry in power heterogeneous networks not only disrupts the functioning of the routing protocol in use, but also results in unfairness in medium access. In this paper, we develop a cross-layer framework to effectively address the link asymmetry problem at both the MAC and the routing layers. At the MAC layer, the framework intelligently propagates low power control messages to the higher power nodes, so as to preclude them from initiating transmissions while there are low power communications in progress within their sensing range. At the routing layer, the framework facilitates the efficient use of unidirectional links. We perform extensive simulations to study the performance of our proposed framework in various settings, and show that the overall throughput in power heterogeneous networks is enhanced by as much as 25% over traditional layered approaches. In addition, we show that our schemes are also beneficial in power homogeneous settings, as they reduce the extent of false link failures that arise when the IEEE 802.11 MAC protocol is used. In summary, our framework offers a simple yet effective and viable approach for medium access control and for supporting routing in power heterogeneous ad hoc networks.  相似文献   

6.
Developing energy-efficient clusters not only can reduce power electricity cost but also can improve system reliability. Existing scheduling strategies developed for energy-efficient clusters conserve energy at the cost of performance. The performance problem becomes especially apparent when cluster computing systems are heavily loaded. To address this issue, we propose in this paper a novel scheduling strategy–adaptive energy-efficient scheduling or AEES–for aperiodic and independent real-time tasks on heterogeneous clusters with dynamic voltage scaling. The AEES scheme aims to adaptively adjust voltages according to the workload conditions of a cluster, thereby making the best trade-offs between energy conservation and schedulability. When the cluster is heavily loaded, AEES considers voltage levels of both new tasks and running tasks to meet tasks’ deadlines. Under light load, AEES aggressively reduces the voltage levels to conserve energy while maintaining higher guarantee ratios. We conducted extensive experiments to compare AEES with an existing algorithm–MEG, as well as two baseline algorithms–MELV, MEHV. Experimental results show that AEES significantly improves the scheduling quality of MELV, MEHV and MEG.  相似文献   

7.
针对具有独立DVFS的多核处理器系统,提出了一种K线程低能耗模型的并行任务调度优化算法(Tasks Optimization based on Energy-Effectiveness Model,TO-EEM)。与传统的并行任务节能调度相比,该算法的主要目标是不仅通过降低处理器频率来减少处理器瞬时功耗,而且结合并行任务间的同步互斥所造成的线程阻塞情况,合理分配线程资源来减少线程同步时间,优化并行性能;保证任务在一定的并行加速比性能前提下,提高资源利用率,减少能耗,达到程序能耗和性能之间的折衷。文中进行了大量模拟实验,结果证明提出的任务优化模型算法节能效果明显,能有效降低处理器的功耗,并始终保持线性加速比。  相似文献   

8.
Sleep modes are widely accepted as an effective technique for energy-efficient networking: by adequately putting to sleep and waking up network resources according to traffic demands, a proportionality between energy consumption and network utilization can be approached, with important reductions in energy consumption. Previous studies have investigated and evaluated sleep modes for wireless access networks, computing variable percentages of energy savings. In this paper we characterize the maximum energy saving that can be achieved in a cellular wireless access network under a given performance constraint. In particular, our approach allows the derivation of realistic estimates of the energy-optimal density of base stations corresponding to a given user density, under a fixed performance constraint. Our results allow different sleep mode proposals to be measured against the maximum theoretically achievable improvement. We show, through numerical evaluation, the possible energy savings in today’s networks, and we further demonstrate that even with the development of highly energy-efficient hardware, a holistic approach incorporating system level techniques is essential to achieving maximum energy efficiency.  相似文献   

9.
10.
Wireless mesh networks (WMNs) have emerged as a key technology having various advantages, especially in providing cost-effective coverage and connectivity solutions in both rural and urban areas. WMNs are typically deployed as backbone networks, usually employing spatial TDMA (STDMA)-based access schemes which are suitable for the high traffic demands of WMNs. This paper aims to achieve higher utilization of the network capacity and thereby aims to increase the application layer throughput of STDMA-based WMNs. The central idea is to use optimized link state routing (OLSR)-specific routing layer information in link layer channel access schedule formation. This paper proposes two STDMA-based channel access scheduling schemes (one distributed, one centralized) that exploit OLSR-specific information to improve the application layer throughput without introducing any additional messaging overhead. To justify the contribution of using OLSR-specific information to the throughput, the proposed schemes are compared against one another and against their non-OLSR-aware versions via extensive ns-2 simulations. Our simulation results verify that utilizing OLSR-specific information significantly improves the overall network performance both in distributed and in centralized schemes. The simulation results further show that OLSR-aware scheduling algorithms attain higher end-to-end throughput although their non-OLSR-aware counterparts achieve higher concurrency in slot allocations.  相似文献   

11.
Wireless sensor nodes typically switch between sleep and wake periods. This poses a rendezvous problem on message senders and recipients. X-MAC, a state of the art sensor network medium access control (MAC) protocol, solves this problem by sending a strobe of short preambles from the message sender until the message recipient wakes up. Upon wake-up, the recipient receives the next strobe, signals the message sender that it is ready to receive, and the message transmission can take place. In sink oriented communication, geographic greedy routing, and link reversal routing, a forwarding node may have more than one potential next hop forwarding node. X-MAC does not support such opportunistic communication patterns. Instead it requires the sender to name the recipient explicitly. However, preamble length can be saved when message transmission starts as soon as the first one of the set of potential next hop nodes is waken up by a preamble. This requires PaderMAC, a new MAC protocol, where the decision on the next hop node is shifted from the sender to the receiver. This work specifies the PaderMAC protocol, explains the implementation of that protocol using TinyOS and the MAC layer architecture (MLA), describes a contribution to the MLA which is useful also for other MAC layer implementations, and presents the results of a testbed and theoretical performance study. The testbed study compares PaderMAC in conjunction with opportunistic routing to X-MAC in conjunction with path-based routing and shows how PaderMAC reduces the preamble length, better balances the load and further improves the end-to-end latency within the network.  相似文献   

12.
抢占阈值调度的功耗优化   总被引:2,自引:0,他引:2  
DVS(Dynamic Voltage Scaling)技术的应用使得任务执行时间延长进而使得处理器的静态功耗(由CMOS电路的泄露电流引起)迅速增加.延迟调度(Procrastination Scheduling)算法是近年提出用于减少静态功耗的有效方法,它通过推迟任务的正常执行来尽可能长时间地让处理器处于睡眠或关闭状态,从而避免过多的静态功耗泄露.文中针对可变电压处理器上运用抢占阈值调度策略的周期性任务集合,将节能调度和延迟调度结合起来,提出一种两阶段节能调度算法,先使用离线算法来计算每个任务的最优处理器执行速度,而后使用在线模拟调度算法来计算每个任务的延迟时间,从而动态判定处理器开启/关闭时刻.实例研究和仿真实验表明,作者的方法能够进一步降低抢占阈值任务调度算法的功耗.  相似文献   

13.
As green computing is becoming a popular computing paradigm, the performance of energy-efficient data center becomes increasingly important. This paper proposes power-aware performance management via stochastic control method (PAPMSC), a novel stochastic control approach for virtualized web servers. It addresses the instability and inefficiency issues due to dynamic web workloads. It features a coordinated control architecture that optimizes the resource allocation and minimizes the overall power consumption while guaranteeing the service level agreements (SLAs). More specifically, due to the interference effect among the co-located virtualized web servers and time-varying workloads, the relationship between the hardware resource assignment to different virtual servers and the web applications’ performance is considered as a coupled Multi-Input-Multi-Output (MIMO) system and formulated as a robust optimization problem. We propose a constrained stochastic linear-quadratic controller (cSLQC) to solve the problem by minimizing the quadratic cost function subject to constraints on resource allocation and applications’ performance. Furthermore, a proportional controller is integrated to enhance system stability. In the second layer, we dynamically manipulate the physical frequency for power efficiency using an adaptive linear quadratic regulator (ALQR). Experiments on our testbed server with a variety of workload patterns demonstrate that the proposed control solution significantly outperforms existing solutions in terms of effectiveness and robustness.  相似文献   

14.
In this paper, we propose a novel on-demand energy-aware routing protocol, utility-based power control routing (UBPCR), which reduces the trade-offs that arise in the other energy-aware route selection mechanisms that have recently been proposed for mobile ad hoc networks. Our approach is based on an economic framework that represents the degree of link's satisfaction (utility). With UBPCR, the utility function for any transmitter–receiver pair is defined as a measure of the link's preference regarding the signal-to-interference-plus-noise ratio (SINR), the transmit power, and the transmitter's residual battery capacity. During a route-searching process, each intermediate node between the source and the destination is executed via two consecutive phases: the scheduling phase and the transmit power control phase. The scheduling algorithm finds the proper qualified data slot for the receiving channel so that the transmissions of independent transmitters can be coordinated. The transmit power control determines the optimal power, if one exists, that maximizes the corresponding link's utility. Extensive simulations show that the UBPCR protocol can achieve incompatible goals simultaneously and fairly.  相似文献   

15.
This paper presents a new energy-aware QoS scheduling and call admission control algorithm for WiMAX IEEE 802.16e wireless access standard. The scheduling algorithm works at MAC layer and is designed towards minimizing power consumption at mobile stations supporting multiple Unsolicited Grant Service (UGS) connections, while meeting the QoS requirements of the connections. The algorithm uses a novel idea to fill an active OFDM frame as much as possible in order to increase the number of OFDM frames in sleep mode at mobile station. The algorithm also considers the dynamic nature of connection joining and termination. We used Voice-over-IP (VoIP) traffic connection models for UGS traffic flows to simulate and validate algorithm. The simulation model was tested using VoIP codec types with different rates and QoS requirements. Simulation results show that a power saving in the range of 50–75% can be easily achieved at the mobile station under low-to-moderate traffic intensities.  相似文献   

16.
为了提高网络的综合性能,充分考虑了数据链路层和网络层的影响因素。对比分析了不同Mac接入协议的切换方法,为无线自组网络选择了一个合适的路由和接入协议。通过在NS-2中仿真Mac层的802.11a和802.11Ext路由场景,对AODV协议的归一化路由开销、路由发现频率、端到端平均时延以及数据分组投递率进行了全面的分析比较。结果表明,802.11Ext接入协议具有明显的优势特点,更加稳定、更适合移动网络。  相似文献   

17.
无线传感器网络的拓扑控制   总被引:32,自引:0,他引:32  
拓扑控制是无线传感器网络研究中的核心问题之一.拓扑控制对于延长网络的生存时间、减小通信干扰、提高MAC(media access control)协议和路由协议的效率等具有重要意义.全面阐述了拓扑控制技术的研究进展,首先明确了拓扑控制研究的问题和设计目标,然后分别从功率控制和睡眠调度两个方面介绍代表性的研究工作,并加以分析和比较,同时指出了这些工作存在的不足.最后分析和总结了研究现状中存在的问题、需要进一步研究的内容以及拓扑控制研究的发展趋势.  相似文献   

18.
The combination of vehicles and wireless communication has resulted in a promising future for vehicular ad hoc networks (VANETs). The VANET is a kind of network that can be built randomly, quickly and temporarily without any infrastructure. The routing of data in a VANET is a challenging task due to the high dynamics, unstable connection environments and transfer direction limit (real road planning) involved. However, it has been discussed that radio obstacles, as found in urban areas, have a significant negative impact on the performance of location based routing. Therefore, the design of a suitable routing protocol for VANETs is an important issue, especially in regard to inter-vehicle communication applications. This paper proposes a energy-efficient geographic routing algorithm that uses the direction, density and distance between nodes in the crossroad routing strategy, to improve the link stability. We compare the novel scheme, ad hoc on-demand distance vector, and dynamic source routing (DSR) for packet loss rate and average end-to-end delay in VANETs to reduce the power consumptions. The simulation results are obtained which demonstrate the power effectiveness of our proposed routing strategy.  相似文献   

19.
传统的路由协议都是基于"最短路径"的考虑,节点在对数据包进行调度转发的时候,无条件的为路由控制消息赋予较高的优先转发权,这样就会导致网络中处于骨干位置的节点负载过重,从而进一步影响整个网络的性能.本文提出一种新的基于跨层协作的负载均衡队列调度算法(CLLBS),通过在MAC层与网络层监视节点网络负载,配合路由协议,根据节点的负载状况实时动态地对数据流的转发优先权进行调整,在整个网络进行负载均衡,缓解那些拥塞节点的负载压力.仿真结果表明本文算法较之传统的简单优先权算法有明显的性能提高,可以有效地提高网络的吞吐量,降低丢包率.  相似文献   

20.
This paper considers a two-user multiple-input single-output (MISO) interference channel with confidential messages (IFC-CM), where the beamforming vectors at the two transmitters are jointly optimized using the closed-form Pareto-optimal parameterization. We prove that artificial noise cannot improve the secrecy rate performance, and coordinated beamforming is secrecy-rate optimal which is achieved by agreeing on the parameters between the two transmitters. We analyze the feasible set of the beamforming parameters that guarantees positiveness of the secrecy rates when the transmitters know only statistical CSI, and then analysis in the ergodic secrecy rate region is discussed. More importantly, we derive the closed form of the ergodic secrecy rates and illustrate the Pareto-optimal structure of the beamforming vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号