首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured superhydrophobic surfaces   总被引:1,自引:0,他引:1  
  相似文献   

2.
Mechanically durable superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.  相似文献   

3.
We present a facile method for fabricating superhydrophobic polymer surfaces by solubility modulation and nanocarbon (NC)-induced crystallization of polycarbonate (PC). The method consists of dipping polymer sheets in a solvent in which the polymer is partially soluble and then inducing solution crystallization by dipping the sheet in a poor solvent for several seconds. A solvent mixture of methyl ethyl ketone and isopropyl alcohol (IPA) was optimized to shorten the crystallization time in a poor solvent. Single-walled carbon nanotubes, multiwalled carbon nanotubes (MWNTs), and graphene sheets were used to nucleate PC crystallization. In particular, monolayer graphene sheets were prepared by reducing graphene oxide with hydrazine. Crystalline micro- and nanostructures rapidly formed upon dipping of the PC sheets in the solution containing NCs, followed by immersion in IPA. The structures depended on the dimensions of the NCs. Especially, in the MWNT solution, dipping for 10 s was sufficient to create a superhydrophobic surface. Crystallization of PC and the incorporation of NCs during crystallization were characterized by Raman spectroscopy.  相似文献   

4.
Abstract

Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.  相似文献   

5.
Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.  相似文献   

6.
ABSTRACT

Steel, aluminium and magnesium are important engineering materials owing to their excellent mechanical properties. However, their applications are limited due to inadequate corrosion resistance. Various coatings and improvement technologies are used to enhance the corrosion resistance in industry and consumer products. Fabrication of hydrophobic surfaces is a very interesting approach to anticorrosion in that it is derived from the superhydrophobicity found in nature. This paper is a general review of the methods to construct a superhydrophobic surface, i.e. a thin coating layer, on various metallic materials surfaces to enhance their anticorrosion property, providing an introduction of the superhydrophobicity, including theory, properties and fabricating methods. Different methods including spray technique, laser ablation, electrochemical deposition, micro-arc oxidation and etching routes were discussed.  相似文献   

7.
Recently, several unique studies on surface patterning have been developed based on superhydrophobic surfaces, where air was introduced as the separating barrier for the surface pattern. This new type of surface patterning approach is called "air-grid surface patterning." Traditional technologies of surface patterning always utilize the solid or liquid phase as the separating barrier, for example, a 2D chemical molecular barrier in soft lithography, a 3D solid barrier in photolithography, or a liquid barrier in microfluidic, laminar flow patterning methods. These recent studies reveal that air can act as a gas-phase separating barrier. This concept is expected to open up a new branch of applications of superhydrophobic surfaces, and it exhibits promising potential for functional micropatterning of various materials, from nanomaterials to crystals to cells.  相似文献   

8.
有机硅烷构建超疏水表面的研究进展   总被引:1,自引:0,他引:1  
有机硅烷中的硅氧烷、氯硅烷、氟硅烷具有活泼的化学反应特性,易形成低表面能的单分子层或者聚硅氧烷涂层,是构建超疏水表面的重要材料.近年来,人们利用这些有机硅烷构建超疏水表面开展了大量的研究,在自清洁、抗粘附、防腐等方面具有重要的意义.根据现有的理论和研究,综述了该领域取得的最新研究进展,并探讨了目前所存在的问题.  相似文献   

9.
Measurement of slip length on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
In this paper, a review of different techniques used to measure the slip length on superhydrophobic surfaces with large slip length is presented. First, we present the theoretical models used to calculate the effective slip length on superhydrophobic surfaces in different configurations of liquid flow. Then, we present the different techniques used to measure the slip past these superhydrophobic surfaces: rheometry, particle image velocimetry, pressure drop, surface force apparatus and atomic force microscopy.  相似文献   

10.
A surface with micro- and nano-scale ZnO (zinc oxide) structure was fabricated by alkaline hydrothermal method. The CA (contact angle) on this double-roughness surface was low (down to ∼ 0°), but after spin-coating Teflon, the CA was increased to ∼ 168°. By observing with SEM, a “rose” like ZnO crystal surface structure was found, which was responsible for both superhydrophilicity and superhydrophobicity. The prepared surface also showed high chemical stability even after immersing the sample in water for 15 days. The method is simply controllable, cost-effective, and has a wide range of potential applications such as self-cleaning superhydrophobic coating on large areas of different substrates.  相似文献   

11.
大面积超疏水铝表面的电化学加工   总被引:1,自引:0,他引:1  
为解决大面积超疏水表面加工难的问题,提出采用移动式阴极电化学加工技术和氟化处理方法来加工大面积超疏水铝表面,并使用扫描电子显微镜(SEM)、能谱仪(EDS)和接触角测量仪对铝表面的形貌、化学成分和疏水性进行了研究.结果表明:采用小面积移动式阴极制备大面积超疏水铝表面是可行的;当采用NaCl电解液时,在较优单位面积去除量不变的情况下,单位面积去除速度对铝表面的疏水性几乎无影响,这有利于实现超疏水表面的高效加工;加工后的铝表面获得超疏水性的关键在于表面存在合适的二元微纳米粗糙结构和低表面能涂层.  相似文献   

12.
Towards optimization of patterned superhydrophobic surfaces.   总被引:2,自引:0,他引:2       下载免费PDF全文
Experimental and theoretical study of wetting properties of patterned Si surfaces with cylindrical flat-top pillars of various sizes and pitch distances is presented. The values of the contact angle (CA), contact angle hysteresis (CAH) and tilt angle (TA) are measured and compared with the theoretical values. Transition from the composite solid-liquid-air to the homogeneous solid-liquid interface is investigated. It is found that the wetting behaviour of a patterned hydrophobic surface depends upon a simple non-dimensional parameter, the spacing factor, equal to the pillar diameter divided by the pitch. The spacing factor controls the CA, CAH and TA in the composite interface regime, as well as destabilization and transition to the homogeneous interface. We show that the assumption that the CAH is a consequence of the adhesion hysteresis and surface roughness leads to the theoretical values of the CAH that are in a reasonably good agreement with the experimental values. By decreasing the spacing factor, the values of CA=170 degrees, CAH=5 degrees and TA=3 degrees are achieved. However, with further decreasing of the spacing factor, the composite interface destabilizes.  相似文献   

13.
We propose a novel design of a biomimetic micro-structured surface, which exhibits controlled strongly direction-dependent adhesion properties. The micro-system consists of parallel elastic wall-like structures covered by a thin layer. Numerical calculations have been carried out to study the adhesive properties of the proposed system and to provide design criteria with the aim of obtaining optimized geometries. A numerically equivalent version of the double cantilever beam fracture experiment is, then, simulated by means of finite element analysis to investigate the anisotropic adhesion of the structure. We find that, because of inherent crack trapping properties of these types of structures, the wall-like geometry allows us to strongly enhance adhesion when the detachment direction is perpendicular to the walls. On the other hand, when the detachment occurs parallel to the walls, the system shows low adhesion. This controlled direction-dependent adhesive property of the proposed structure solves one of the key problems of biomimetic adhesive surfaces, which usually show very strong adhesion, even larger than biological systems, but are not suitable for object manipulation and locomotion, as detachment always occurs at high loads and cannot be controlled.  相似文献   

14.
Abstract

This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.  相似文献   

15.
杨焕  曹宇  李峰平  薛伟 《光电工程》2017,44(12):1160-1168

由于超疏水表面在防腐、油水分离、流体减阻和液体转移方面的应用潜力,如何制作性能优异的超疏水表面成为研究热点。材料表面的形貌特征是决定其润湿性能的一个重要因素,因此,通常采用表面结构化来获得超疏水性能。在材料表面构织微纳结构方面,基于脉冲激光的微纳加工技术具有得天独厚的优势,尤其是在制作特定图案的复杂结构方面。本文根据激光器的脉冲宽度分类,通过刻蚀后材料表面形貌和润湿性特征对激光制作超疏水表面的基本理论和典型工艺方法进行介绍和总结,并对超疏水表面的发展前景作出展望。

  相似文献   

16.
Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering their surface energy. In the present work, a direct voltage (DC) is applied between two copper plates immersed in a dilute ethanolic stearic acid solution. The surface of the anodic copper electrode transforms to superhydrophobic due to a reaction between copper and stearic acid solution. The fabrication process of superhydrophobic copper surfaces is simplified in just one-step. The surface of the anodic copper is found to be covered with flower-like low surface energy copper stearate films providing the water contact angle of 153 ± 2° with the roll-off properties.  相似文献   

17.
This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.  相似文献   

18.
We present a simple approach for preparing hydrophobic silicon surfaces by constructing silicon nanowire arrays using Ag-assisted chemical etching without low-surface-energy material modification. The static and dynamic wetting properties of the nanostructured surfaces and their dependence on etching conditions were studied. It was revealed that the surface topologies of silicon nanowire arrays and their corresponding wetting properties could be tuned by varying the etching time. Under optimized etching conditions, superhydrophobic surfaces with an apparent contact angle larger than 150 degrees and a sliding angle smaller than 10 degrees were achieved due to the formation of a hierarchical structure. The origin of hydrophobic behavior was discussed based on Wenzel and Cassie models. In addition, the effects of surface modification of Si surface nanostructures on their hydrophobic characteristics were also investigated.  相似文献   

19.
A low-cost method to produce superhydrophobic polymer surfaces   总被引:1,自引:0,他引:1  
Here, we introduce a novel and inexpensive template-based structuring process to create superhydrophobic polymer surfaces adapted from the naturally occurring micro/nano structured surfaces found on the superhydrophobic leaves of the quaking aspen tree. Electroformed nanocrystalline nickel coupons were sandblasted and chemically etched to create a negative reproduction of the aspen leaf surface structure. These nanocrystalline nickel samples were then employed as re-useable templates and pressed against various polymers at elevated temperatures, transferring the desired superhydrophobic structure to their surfaces. This structuring process resulted in water contact angles above 150° and tilt angles below 5° for polyethylene, polypropylene and polytetrafluoroethylene samples. In addition, the effects of temperature, water drop size and surfactant concentration on these pressed polymer surfaces were investigated to assess potential application limitations for these surfaces.  相似文献   

20.
Gou S  Mossman M  Whitehead L 《Applied optics》2012,51(11):1645-1653
This work involves a new optical application for transparent superhydrophobic materials, which enables low-energy optical contact between a liquid and solid surface. The new technique described here uses this surface property to control the reflectance of a surface using frustration of total internal reflection. Surface chemistry and appropriate micro-scale and nano-scale geometries are combined to produce interfaces with low adhesion to water and the degree to which incident light is reflected at this interface is controlled by the movement of water, thereby modifying the optical characteristics at the interface. The low adhesion of water to superhydrophobic surfaces is particularly advantageous in imaging applications where power use must be minimized. This paper describes the general approach, as well as a proof-of-principle experiment in which the reflectance was controlled by moving a water drop into and out of contact with a superhydrophobic surface by variation of applied electrostatic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号