首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the reference[1] it is known that the addition of silicalite-1 in silicone rubber membranes results in an increase of both flux and selectivity for alcohol in the separation of alcohol/water by pervaporation.In order to enhance performance of pervaporation toward the aqueous solution of acetic acid,incorporation of carbon molecular sieve(CMS)into a PDMS membrane was investigated. CMS is widely used in adsorption processes because of its high selectivity toward certain compounds[2]. It was assumed that the flux and selectivity of pure PDMS membrane could be enhanced owing to the preferential adsorption of CMS to organics.CMS content in the membrane and several important pervaporation operation parameters, including feed concentration of acetic acid, and feed temperature, were investigated.  相似文献   

2.
Polymer precursor and processing method have a significant effect on the separation performance of carbon molecular sieve (CMS) membranes. The authors previously developed a polymer processing method involving oxygen exposure during pyrolysis using synthesized polyimide, 6FDA/BPDA-DAM. The objectives of this work were (i) to demonstrate the generality of the oxygen doping method with a commercially available polymer Matrimid®, (ii) to investigate resultant CMS membrane structures, and (iii) to engineer the CMS performance observed with Matrimid® precursor by tuning the pyrolysis temperature. The investigation of the pore structures is challenging due to their amorphous structures. Various researchers investigated using traditional characterization methods, such as XRD and adsorption, yet molecular sieving structure in ultramicropore region is still not known. Here, the authors investigated using gas molecules as a probe. By interpolating the characterization results, hypothetical ultramicropore size distributions for each CMS membranes are suggested. The results are used to explain dramatically different separation performance trends observed between 6FDA/BPDA-DAM and Matrimid® CMS membranes and to adapt the doping method on Matrimid® CMS membrane for better performance.  相似文献   

3.
A transformative platform is reported to derive ultra-thin carbon molecular sieve (CMS) hollow fiber membranes from dual-layer precursor hollow fibers with independently tuned skin layer and substrate properties. These ultra-thin CMS hollow fiber membranes show attractive CO2/CH4 separation factors and excellent CO2 permeances up to ~1,400% higher than state-of-the-art asymmetric CMS hollow fiber membranes. They provide a unique combination of permeance and selectivity competitive with zeolite membranes, but with much higher membrane packing density and potentially much lower costs.  相似文献   

4.
Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale‐up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot‐scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench‐scale system. After optimizing the system design, a 93 % recovery of the precursor fibers for use in membrane module preparation were obtained.  相似文献   

5.
Permeation of N2, CH4, O2 and CO2 molecules through a carbon molecular sieve (CMS) was studied over a wide range of pressures using the transport mechanism. For proper utilization of carbon molecular sieve membrane in gas separation processes, prediction of behavior and recognition of proper gas transport mechanism as well as finding effective permeation parameters are necessary. A mathematical model of the gas transfer through a CMS membrane was developed using genetic algorithm (GA). Numerous types of mechanisms have been proposed so far for gas transport through capillaries, namely: Knudsen, slip and viscous flow. Moreover, surface flow usually occurs in parallel with other transport mechanisms such as Knudsen or viscous flow. The experimental data of gas permeation in CMS membranes and an appropriate genetic algorithm-based optimization method were used to establish the transport parameters. A GA, an optimization procedure based on the theory of evolution, was compared with non-linear regression for the ability of these two algorithms to fit the coefficients of Poultry growth models. It was found that GA approach could be more capable to define the parameters of permeation equation than non-linear regression. The model in most cases showed a good agreement between the predicted and measured values of the permeability.  相似文献   

6.
高性能甲烷/氮气分离用炭分子筛是保证低浓度煤层气变压吸附分离的前提.以椰壳炭化料为原料在一定条件下活化制备了炭前驱体,以甲烷为沉积剂通过气相炭沉积调孔制备炭分子筛,考察沉积时间、沉积温度、沉积剂浓度和沉积剂量对变压吸附分离甲烷/氮气效果的影响,采用N2吸附法分析了炭前驱体的比表面积和孔径分布.结果表明:炭化时间40 m...  相似文献   

7.
石脑油高效资源化研究进展   总被引:2,自引:1,他引:1       下载免费PDF全文
为了实现石脑油的高效资源化利用,需开发石脑油高效分离技术。简述了石脑油正/异构烷烃吸附分离原理及分离技术现状,介绍了新型吸附剂材料的研发进展,包括金属有机框架材料(MOFs)、沸石咪唑框架材料(ZIFs)、碳分子筛(CMS)、中空沸石分子筛等,阐述了新型吸附材料对正构烷烃的分离效果和分离机理,探讨了新型吸附剂、膜分离技术和吸附-膜分离耦合技术用于分离石脑油中正/异构烷烃的可行性,展望了新型正/异构烷烃分离技术,以期为石脑油高效资源化利用提供新途径。  相似文献   

8.
酸性侵蚀性气体分离膜材料研究及应用进展   总被引:1,自引:1,他引:0  
邓立元  钟宏 《化工进展》2004,23(9):958-962
综述了CO2、H2S、SO2、Cl2及HCl等酸性侵蚀性气体分离膜材料的最新研究与应用进展,讨论了这类气体膜分离工艺对膜材料的要求,介绍了聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)、聚四氟乙烯(PTFE)、碳分子筛(CMS)等几种耐蚀分离膜材料的特征结构、特点、适用的气体分离类型及相应的分离机理。  相似文献   

9.
煤基碳分子筛的研究进展及应用现状   总被引:1,自引:1,他引:0  
基于原料煤种分类,简要介绍了煤基碳分子筛的制备工艺和在气体分离方面的应用,详细阐述了国内外煤基碳分子筛的研究状况,分析并展望了煤基碳分子筛的应用前景和今后的发展方向。  相似文献   

10.
In this study, a novel pre-pyrolysis treatment is developed to restrict the morphology collapse in asymmetric carbon molecular sieve (CMS) hollow fiber membranes. The technique is referred as V-treatment, due to the use of a sol–gel crosslinking reaction between an organic-alkoxy silane (vinyltrimethoxysilane) and moisture. The V-treatment technique enables restricting the microscale morphology collapse in asymmetric CMS membranes without having a chemical reaction with the polymer precursor material. The effect of V-treatment is reported on two different polyimide precursors: Matrimid® and 6FDA:BPDA-DAM. For both the CMS V-treated Matrimid® and 6FDA:BPDA-DAM hollow fibers, a significant reduction up to 5–6-fold in apparent membrane skin thickness is observed compared to the CMS from untreated precursors. This improvement translates to an increase in gas separation productivities for both pure and mixed gas feeds in CMS V-treated Matrimid® and 6FDA:BPDA-DAM hollow fiber membranes. Moreover, several characterization analyses and transport results for V-treatment method using 100% VTMS are reported herein.  相似文献   

11.
This paper considers physical aging in carbon molecular sieve (CMS) membranes. Moreover, the performance of stabilized membranes under practical operating conditions is discussed. Physical aging has been studied extensively in glassy polymers, but aging in CMS membranes has previously focused primarily on adsorption: either chemisorption of oxygen, or physical adsorption of water and organics in the pore structures. Experimentally, in this study, for the samples considered, all of the above adsorption-induced aging mechanisms were excluded as significant factors through thoughtful experimental design. Physical aging appears to be the primary cause for rapid changes of transport properties in early stages after membrane fabrication for samples derived from high fractional free volume precursors. The CMS pores are believed to age analogously to the “unrelaxed free volume” in glassy polymers. Over time, these pores tend to shrink in order to achieve thermodynamically more stable states. Results of sorption tests in CMS also support the above hypothesis. The significance of physical aging phenomena on membrane testing protocols, structural tailoring, and performance evaluation are discussed. A long term permeation test demonstrated excellent stability of stabilized CMS membranes under realistic conditions.  相似文献   

12.
针对碳分子筛对氮气/甲烷分离体系分离比低的问题,采用浸渍法以市售空分碳分子筛(CMS)为基体,制备了分离氮气/甲烷的铁离子改性碳分子筛。通过静态吸附量、分离比、吸附动力学及热力学性质考察了铁离子负载量对碳分子筛吸附分离氮气/甲烷性能的影响。结果表明:铁(Ⅲ)的负载减小了CMS的比表面积、微孔体积和孔径,使CMS超微孔的孔径分布呈现更集中的趋势。这种集中性以动力学性能下降为代价,明显提高了碳分子筛对氮气/甲烷的吸附分离比。在303 K、0.7 MPa条件下,综合性能优异的0.3%铁改性CMS具有6.03的氮气/甲烷吸附分离比。  相似文献   

13.
Understanding the relationship between carbon molecular sieve (CMS) pore structure and corresponding gas separation performance enables optimization for a given gas separation application. The final pyrolysis temperature and starting polymer precursor are the two critical parameters in controlling CMS performance. This study considers structure and performance changes of CMS derived from a commercially available polymer precursor at different pyrolysis temperatures. As reviewed in this paper, most traditional characterization methods based on microscopy, X-ray diffraction, spectroscopy, sorption-based pore size distribution measurements etc. provide limited information for relating separation performance to the CMS morphology and structural changes. A useful alternative approach based on different sized gases as molecular scale probes of the CMS pore structure was successfully used here in conjunction with separation data to provide critical insights into the structure–performance relationships of the engineered CMS.  相似文献   

14.
The structure of a carbon molecular sieve (CMS) membrane is characterized by the through pores and blind pores with non-linear sorption isotherms inside. Time-lag analysis was conducted for gas permeation in such a structure and mathematical formulations were derived for two cases. It is found that the pressure dependence of the time lag is dominated by the ratio of sorption affinities in the two types of pores. The experimental permeation data of pure component CO2 and N2 measured on a CMS membrane were used to validate the model. It is found that, for the adsorbing species (CO2), the model is able to well describe the diffusion anomalies over a wide range of permeation pressure, while for the weakly adsorbing species (N2), the model is inadequate to cope with the anomalies at the low end of permeation pressure.  相似文献   

15.
The separation of air for nitrogen production can be carried out by pressure-swing-adsorption over a carbon molecular sieve. The separation is kinetically controlled, since the equilibrium adsorption of both oxygen and nitrogen is very similar, but the adsorption kinetics for oxygen is faster than for nitrogen. Several methods to prepare carbon molecular sieves are reported. In this work, we synthesized a carbon molecular sieve from a commercial activated carbon. After deposition of polyfurfuryl alcohol, these materials were subjected to carbonization at 800°C under an inert atmosphere. All the microporous materials were characterized by analysis of kinetics and equilibrium adsorption data. The molecular sieve performance was assessed by the O2/N2 uptake ratio. The material prepared by two depositions has characteristics similar to those of commercial CMS.  相似文献   

16.
Membrane technology has been considered a key factor for sustainable growth in high-efficiency gas separation. Current mixed matrix membranes (MMMs) technology is rising, but these membranes in the dense structure are having difficulties in operating at high pressures and scale up for commercialization. The purpose of this research is to synthesize composite MMMs (CMMMs) consisting of polyethersulfone (PES), carbon molecular sieve (CMS 1–5 wt %), and Novatex 2471 nonwoven fabric (support layer). The membranes' physical, chemical, and thermal properties were evaluated by different analytical equipment. The morphology of both PES and PES-CMS composite membranes had a porous and asymmetric structure, in which CMS was uniformly distributed in the polymer matrix. The thermal properties showed that the membranes were stable up to 350 °C with a single glass transition temperature. The functional groups in the membrane were confirmed by spectral analysis. The gas performance results showed that carbon dioxide permeance increased with increased CMS concentration and methane permeance decreased due to the hindering effect of CMS under similar operating conditions. The highest selectivity achieved was 12.774 using CMMM of 5 wt % of CMS at 10 bar, which on average was 137.80%, improved selectivity compared to pure PES membrane. The support layer was able to withstand high operating pressures and showed the ability to scale up. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48476.  相似文献   

17.
武思拓 《广东化工》2012,(12):205-206,201
沸石/炭分子筛复合膜具有较优良的气体分离效果,是一种非常有发展潜力的膜材料。本研究分别用纳米Beta分子筛和Beta沸石纳米团聚体合成了Beta沸石/炭复合膜,结果表明,Beta沸石纳米团聚体所制备的复合膜的气体分离性能优于纳米Beta分子筛所制备的复合膜。  相似文献   

18.
李江川  李英霞 《工业催化》2014,22(8):603-608
采用二次生长法,通过在晶种涂覆液中添加硅溶胶,在不锈钢丝网载体上制备牢固的Beta分子筛膜,系统考察晶种层中硅溶胶含量、晶种涂覆量、结晶温度和结晶时间对分子筛膜生长的影响。实验中发现,硅溶胶的存在可以增加涂覆层的牢固度,促进Beta分子筛膜的生长;硅溶胶既具有黏合剂的作用又可以补充硅源。当涂覆量较低时,无法得到一个完整的分子筛膜,分子筛膜负载量随着涂覆量的增加而增加;当结晶温度升至一定程度,分子筛膜组成不再单一。晶化过程中伴随着晶种的脱落和溶解。制备的Beta分子筛膜对N2O催化分解具有良好的催化活性。  相似文献   

19.
由灵武煤新法干馏半焦制备炭分子筛的研究   总被引:2,自引:1,他引:2  
以灵武不粘煤的固体热载体新法干馏半焦为原料,综合使用碳化法和碳沉积法进行了空分富氮用炭分子筛的制备研究,考察了碳化和碳沉积工艺条件对产品空分性能的影响,并用FTIR和XRD技术对产品炭分子筛进行了表片。结果表明,灵武煤的新法干馏半焦是制备炭分子筛的优良产;在最佳工艺条件下制得的炭分子筛的空分性能可与进口的同类产品相媲美;炭分子筛是典型的无定形炭,其表面含氧官能团主要是C-O键和C=O键。  相似文献   

20.
A commercial polyimide, Matrimid® 5218, was pyrolyzed under an inert argon atmosphere to produce carbon molecular sieve (CMS) dense film membranes for nitrogen/methane separation. The resulting CMS dense film separation performance was evaluated using both pure and mixed N2/CH4 permeation tests. The effects of final pyrolysis temperature on N2/CH4 separation are reported. The separation performance of all CMS dense films significantly exceeds the polymer precursor dense film. The CMS dense film pyrolyzed at 800 °C shows very attractive separation performance that surpasses the polymer membrane upper bound line, with N2 permeability of 6.8 Barrers and N2/CH4 permselectivity of 7.7 from pure gas permeation, and N2 permeability of 5.2 Barrers and N2/CH4 permselectivity of 6.0 from mixed gas permeation. The temperature dependences of permeabilities, sorption coefficients, and diffusion coefficients of the membrane were studied, and the activation energy for permeation and diffusion, as well as the apparent heats of sorption are reported. The high permselectivity of this dense film is shown to arise from a significant entropic contribution in the diffusion selectivity. The study shows that the rigid ‘slit-shaped’ CMS pore structure can enable a strong molecular sieving effect to effectively distinguish the size and shape difference between N2 and CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号