首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
栅格非均匀计算过程中采用的全反射边界条件近似带来的中子射流效应和中子能谱干涉效应等环境效应对栅元均匀化常数具有较大影响。为在全堆芯pin by pin计算中处理环境效应带来的影响,本文从两个方面进行了计算分析。首先,基于棋盘式多组件问题对栅元均匀化群常数相对误差及各能群栅元不连续因子相对重要性进行了分析,可发现在等效均匀化常数中,热群不连续因子对全堆芯pin by pin计算精度的影响最重要;其次,基于最小二乘法建立了热群栅元不连续因子和堆芯中子学特征量之间的多项式函数关系,利用参数化技术提出了热群常数堆芯在线计算方法,其中堆芯中子学特征量包括扩散系数、移出截面、中子源项、归一化中子通量密度等。采用C5G7基准题和KAIST基准题进行了数值验证,计算结果表明,热群常数堆芯在线计算方法能有效降低全堆芯pin by pin计算特征值和棒功率相对误差,对处于不同燃料组件交界面附近的栅元,计算精度提升尤为显著。  相似文献   

2.
在压水堆堆芯Pin-by-pin计算中,采用超级均匀化(SPH)方法作为均匀化技术,对燃料组件传统SPH因子进行计算,生成了Pin-by-pin等效均匀化参数。针对存在中子泄漏现象的反射层组件,研究了与空间泄漏相关的SPH方法,在保证反应率守恒的基础上,同时保证各栅元各能群的中子泄漏率守恒,解决了存在中子泄漏时SPH因子迭代计算的不收敛问题,生成了反射层组件的等效均匀化参数。基于KAIST基准题,分析了压水堆堆芯Pin-by-pin计算中应用SPH因子的堆芯计算精度。数值结果表明,与传统组件均匀化计算方法相比,应用SPH方法的压水堆堆芯Pin-by-pin计算的计算精度更高。  相似文献   

3.
随着科学研究的不断深入、计算条件和对设计计算精度要求的不断提高,全堆芯Pin-by-pin计算已成为了下一代堆芯数值计算方法研究热点。超级均匀化方法作为全堆芯Pin-by-pin计算的均匀化方法主流方法之一被广泛使用。针对燃料组件采用传统超级均匀化方法,对存在中子泄漏的反射层组件采用空间泄漏相关的超级均匀化方法,产生了包含超级均匀化因子在内的等效均匀化常数。基于三维C5G7基准题,分析了此等效均匀化常数计算方式在非均匀性较强、中子泄漏较大反应堆堆芯的中子学计算精度。数值结果表明:与传统组件均匀化计算方法相比,应用了超级均匀化方法的堆芯Pin-by-pin计算的计算精度更高。  相似文献   

4.
随着堆芯中子学计算对精度要求的不断提高,基于栅元均匀化的pin-by-pin方法成为国内外研究热点。由于pin-by-pin计算巨大的空间网格量及栅元层面较强的非均匀性,目前常用的SP3/GSP3方法在平衡计算精度和计算效率方面还存在一定局限性,为此有必要寻找一种同时考虑计算精度与效率的堆芯计算方法。基于准扩散的堆芯pin-by-pin计算方法从中子输运理论出发,引入艾丁顿因子推导建立三维准扩散方程及边界条件,研究该方程泄漏项的特殊处理方法,同时基于节块展开法建立堆芯pin-by-pin数值计算方法并验证。数值结果表明,对于结构复杂、中子各向异性显著的堆芯,准扩散pin-by-pin计算精度要明显优于传统扩散计算,而两者计算效率相当。该方法是一种平衡了堆芯计算效率与精度的计算方法,为准扩散理论应用于堆芯pin-by-pin计算提供了基础。  相似文献   

5.
基于小型多GPU计算平台,采用二维全堆逐层特征线方法(MOC)和三维逐棒(pin-by-pin)三阶简化球谐函数方法(SP3方法)相耦合的方式开发了堆芯三维输运中子学计算程序STORK。在方法论方面,首先通过对堆芯各轴向层的二维MOC输运计算在线产生栅元均匀化截面以及超级均匀化修正因子(SPH因子),然后采用SP3方法进行pin-by-pin三维堆芯计算。在程序开发方面,采用了CUDA、C++和Python的混合编程,且所有计算模块都基于CUDA/C++开发,并进行了大量的性能优化。通过对C5G7三维插棒基准题和VERA基准题的验证表明,与国际上同类中子学计算软件相比,基于CPU/GPU异构系统开发的STORK程序在计算效率和计算成本方面都具有明显优势。  相似文献   

6.
反应堆堆芯先进中子学模拟软件SCAP-N研发   总被引:2,自引:1,他引:1       下载免费PDF全文
堆芯中子学计算是反应堆设计分析的基础,为提高堆芯中子学计算的模拟分辨率与计算精度,开发了反应堆堆芯先进中子学模拟软件(SCAP-N)。该程序首先根据轴向特征对堆芯进行分层,并逐层进行二维堆芯非均匀输运计算,再采用超级均匀化方法(SPH)获得栅元等效均匀化截面,最后进行三维堆芯逐棒(pin-by-pin)输运计算,获得堆芯有效增殖因子与精细棒功率分布。为提高程序计算效率,采用分布式/共享式(MPI/OPENMP)混合并行方式对程序进行了并行化开发。利用虚拟反应堆(VERA)系列基准例题及美国先进非能动压水堆(AP1000)启动物理试验实测数据对程序进行了测试验证。结果表明,相比于商用核设计程序系统,SCAP-N程序采用的逐棒输运技术能够提高堆芯中子学的计算精度。与同类型高精度中子学程序相比,SCAP-N具有更高的计算效率,可进一步提高核电厂的经济性及运行灵活性。   相似文献   

7.
压水堆堆芯Pin-by-pin燃料管理计算程序NECP-Bamboo2.0,利用广义等效均匀化理论实现栅元均匀化计算,采用指数函数展开节块SP3方法进行全堆芯中子输运计算,采用多物理并行计算技术实现了三维全堆芯的核-热-燃耗紧耦合高性能计算。本文利用大型压水堆BEAVRS基准题验证该程序计算的精确性。验证结果表明:NECP-Bamboo2.0具有较高的计算精度,能满足于工程需求。  相似文献   

8.
压水堆各向异性散射的输运修正方法研究   总被引:1,自引:1,他引:0  
压水堆燃料组件中子输运计算为堆芯扩散计算提供均匀化群常数,所以如何在考虑中子各向异性散射的情况下得到堆芯扩散计算所需的少群均匀化参数是值得研究的。本文推导了中子输运修正计算方法的理论模型,介绍了Inflow输运修正计算方法的数值求解过程,在Bamboo-Lattice程序中进行了程序实现,并采用基准题算例对各种输运修正计算方法进行了对比分析。结果表明:各种输运修正计算方法中,Inflow输运修正方法在保证计算效率的前提下能得到更高的计算精度。  相似文献   

9.
两步法反应堆物理计算流程中,组件均匀化群常数显著影响堆芯计算精度。相比确定论方法,连续能量蒙特卡罗方法均匀化精确描述各种几何构型栅格,避免繁琐共振自屏计算,保留更多连续能量信息,不仅产生的群常数更精确,而且普适性也更强。作为实现连续能量蒙特卡罗组件均匀化的第一步,本文应用径迹长度方法统计计算一般群截面和群常数,提出并使用散射事件方法获得不能直接应用确定论方法计算群间散射截面和高阶勒让德系数,应用P1截面计算扩散系数。为还原两步法计算流程中组件在堆芯的临界状态,本文应用BN理论对均匀化群常数进行泄漏修正。在4种类型组件和简化压水堆堆芯上数值验证蒙特卡罗均匀化群常数。验证结果表明:连续能量蒙特卡罗方法组件均匀化群常数具有良好几何适应性,显著提高堆芯计算精度。  相似文献   

10.
在压水堆堆芯Pin-by-pin均匀化计算中采用均匀泄漏修正模型及非均匀泄漏修正模型对组件计算的中子能谱进行修正,本文研究了Pin-by-pin均匀化计算中均匀泄漏修正模型及非均匀泄漏修正模型的实现方式,提出了非均匀泄漏修正模型和栅元均匀化方法的联合实现方式,并分析比较了不同栅元均匀化扩散系数产生方式的计算效果。数值结果表明,非均匀泄漏修正模型及由其产生的中子泄漏系数能有效提高压水堆堆芯Pin-by-pin计算的精度。  相似文献   

11.
连续能量蒙特卡罗方法均匀化群常数直接用于堆芯均匀计算,不能与非均匀计算保持反应率和界面流守恒,需进一步处理使其满足等效均匀化原理。本工作研究广义均匀化理论(GET)和超级均匀化方法(SPH)在蒙特卡罗均匀化中的应用,并数值验证简化压水堆堆芯和C5G7基准题。研究表明,GET和SPH的应用提高了蒙特卡罗均匀化群常数堆芯扩散计算的精度,可作为蒙特卡罗等效均匀化方法。  相似文献   

12.
针对先进栅格中子学程序KYLIN-2的输运计算模块,开展了多个基准题数值验证,包括均匀介质基准题、Postma基准题、沸水堆(BWR)栅元基准题和C5G7组件基准题等。验证结果表明:射线间距对程序计算结果影响相对较小;方位角数目越多,计算精度越高,推荐的方位角数目应大于6;在选择适当的计算参数的前提下,程序输运模块具有较高的计算精度。  相似文献   

13.
为能直接给出安全分析所需的最热棒功率而不引入组件均匀化近似和精细功率重构近似,本文研究了基于栅元均匀化的pin-by-pin中子动力学计算方法。通过全隐式向后差分对多群时空中子动力学方程组的时间变量进行离散,采用指数函数展开节块-SP3(EFEN-SP3)方法求解含裂变介质的多群中子固定源方程组,通过高阶源展开技术消除了中子源分布与缓发中子先驱核分布形状不一致的问题。采用Ks因子、LW外推和粗网再平衡等加速技术提高计算效率。三维pin-by-pin中子动力学问题的数值结果表明:pin-by-pin中子动力学计算能直接给出单棒功率密度分布;高阶源展开技术可有效抑制计算偏差随时间步的累加效应;加速技术可将SP3动力学计算的求解速度提高134.9倍。  相似文献   

14.
超级等效方法研究   总被引:2,自引:0,他引:2  
在广义等效理论(GET)和超级均匀化方法(SPH)的基础上,提出同时满足反应率、界面流和组件特征值守恒,且不显式使用等效因子的超级等效方法(SPE)。在蒙特卡罗组件均匀化中应用SPE,将该方法植入蒙特卡罗组件均匀化程序MCMC,并通过C5G7基准题进行验证。验证分析表明:SPE等效均匀化群常数堆芯计算精度更高,适应性更广。  相似文献   

15.
SARAX-FXS程序是基于确定论方法,适用于快谱堆芯组件能谱、均匀化参数计算的程序。由于快堆中组件空间自屏的非均匀效应不可忽视,本文将基于一维圆柱、平板几何的碰撞概率方法加入SARAX-FXS模块,并以等效一维模型计算组件的均匀化参数。为保证能群归并前后的核反应率守恒,在组件计算中引入超级均匀化(SPH)因子修正截面。采用快堆基准题MET-1000对程序的计算结果进行验证,结果表明,与参考解相比,SARAX-FXS的一维计算模块具有较高的精度,特征值计算相对偏差在100~200pcm之间。堆芯计算结果显示,引入SPH因子可提高特征值计算的精度约300pcm,功率分布的均方根误差可从约3%下降至约1%。  相似文献   

16.
针对最新发布的BEAVRS2.0基准题,采用多群二维输运理论进行燃耗计算,得到离散工况下少群常数并进行截面拟合处理,将先进节块法应用于求解中子扩散方程,建立三维堆芯节块程序SimOR仿真计算模型;选取不同运行工况进行组件均匀化计算、堆芯临界计算,并建立堆芯临界燃耗分析模型,并与BEAVRS2.0基准测量解、nTRACER等程序参考解比对,其计算结果吻合很好,验证了仿真模型建立的正确性与程序计算的精准性,可以广泛应用于核电仿真计算研究,同时为压水堆燃料管理燃料组件计算、堆芯扩散-燃耗计算提供数据依据及方案参考。  相似文献   

17.
基于先进组件程序HELIOS和堆芯节块法程序SIXTUS,研发了超临界水冷堆(SCWR)的中子学计算程序FENNEL-N,并通过与蒙特卡罗程序对比分析了其用于环形燃料超临界水冷堆计算的精度。组件验证结果表明:制作多群数据库的压水堆能谱与超临界水冷堆能谱的差异是导致计算误差的主要原因。堆芯验证结果表明:传统的组件均匀化方法在计算超临界水冷堆时会引入较大误差。应用FENNEL-N程序对组件均匀化方法进行了研究,结果表明,采用优化的组件参数少群结构能减少堆芯能谱变化对精度的影响,采用超组件模型计算组件参数可考虑反射层对组件参数的影响。采用新的组件均匀化方法后,FENNEL-N的计算精度满足了预概念设计需求。  相似文献   

18.
缓发中子有效份额是反应堆物理计算的一项重要参数,本文开展了基于连续能量蒙卡共轭加权的堆芯缓发中子有效份额的计算模型研究,主要物理模型有:瞬发法、能谱替换法、缓发中子有效记录法、直接法、迭代裂变概率法等几种方法。验证工作在多个基准题、高通量工程试验堆和核电站堆芯上完成,从结果看来,基于迭代裂变概率的缓发中子理论模型和实验结果符合得比较好,其他几种方法的精确度各不相同。另外,还得到了基于六组缓发中子有效份额、多核素和多栅元的缓发中子有效份额分布计算结果,给出了基于全堆芯细致分布的缓发中子有效份额分布。从方法上克服了原来确定论计算中,由于采用均匀化方法而不能给出按核素和栅元分布的不足。  相似文献   

19.
基于蒙特卡罗的组件计算程序可以处理复杂几何问题,同时不需要确定论组件计算程序中的共振自屏计算,但是蒙特卡罗组件计算程序在扩散系数和不连续因子的产生上存在一定困难。因此,基于连续能量蒙特卡罗粒子输运计算程序NECP-MCX,开发了组件均匀化少群常数产生功能,使用严格考虑中子各向异性的累积徙动面积法产生扩散系数,利用基模修正考虑中子泄漏对中子能谱的影响,提出网格面计数方法计算修正的组件不连续因子。根据VERA二维组件问题对网格面计数方法进行了验证,并将NECP-MCX用于我国自主化核电“华龙一号”零功率启动物理试验的模拟计算。结果表明,与设计值对比,临界硼浓度、等温温度系数、控制棒积分价值的计算偏差均符合工业限值要求。该程序可以产生可靠的组件均匀化少群常数,计算精度符合工程计算的要求,为该程序在新型反应堆中的进一步应用打下了坚实基础。  相似文献   

20.
针对含有强吸收体控制组件的日本研究堆JRR3M,在进行堆芯输运方程计算时,给出了角通量不连续因子(AFDF)的定义,并指出使用角通量不连续因子的必要性,提出使用迭代求解的方法来提高计算精度,并使之满足不连续因子自洽性。针对堆芯设计计算量大的特点,使用了超栅元近似方法。该方法能有效缩短计算时间,且灵活性强。利用组件形状函数,能重构出非均匀模型堆芯通量分布。最后讨论了扩散计算时不连续因子的选取问题,指出根据参考的不同,应选择不同的不连续因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号