首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
强流氘氚聚变中子源HINEG(High Intensity D-T Fusion Neutron Generator)研发分两期:HINEG-Ⅰ为直流脉冲双模式,已成功产生中子强度1.1×10~(12)n/s的氘氚聚变中子,并实现连续稳定运行;HINEG-Ⅱ中子强度设计指标为10~(14)~10~(15)n/s量级,重点突破强流离子源和高载热氚靶技术。HNEG中子源可开展中子学方法程序与核数据、辐射屏蔽与防护、材料活化与辐照损伤机理和部件中子学性能等核能与核安全研究,同时也可在核医学与放射治疗、中子照相等领域拓展核技术应用研究。本文简要介绍HINEG总体设计方案与关键技术研究进展。  相似文献   

2.
氘氚中子源通过氘离子束轰击氚靶片引发氘氚聚变反应,产生14.1 MeV高能中子。高能中子调控后亦可产生宽能谱中子场,是先进核能及核技术交叉应用研究的重要实验平台。作为中子源的核心部件,氚靶片由靶片基底和储氚薄膜组成,其中储氚薄膜的核素组成会影响氚原子密度与入射氘离子射程,最终直接关系到中子源强的高低。本文基于MATLAB和SRIM软件建立氘氚中子源强计算模型,对比计算了不同新型储氢金属材料组成的储氚薄膜(TiT_2、MgT_2、Mg_2NiT_4、VT_2、LiBT_4和LaNi_5T_6)和不同氘离子能量对中子源强的影响。计算结果表明,在同等束流条件下,MgT_2的中子源强相比TiT_2可提高30%以上,且制备工艺较为成熟,是氘氚中子源的优秀储氚薄膜材料。  相似文献   

3.
大面积氘/氚靶是实现高产额强流中子源的关键部件,是氘、氚中子源广泛应用的前提条件。本工作采用磁控溅射镀膜与多弧离子镀结合的方式,制备以铜或钼为基底、直径大于500 mm的大面积钛膜。针对制备的钛膜,采用自研的氘/氚靶生产系统,经过除气、净化、高温吸氘/氚、尾气回收等流程,生产了氘/氚钛原子比大于1.85的氘靶、氚靶,采用Ф22 mm的小靶片,进行氘束流加速器中子产额测试,研制的氘靶中子产额达到8.0×108/s,根据氘靶与氚靶反应截面计算氚靶中子产额,相同条件下,氚靶的中子产额在1.0×1011/s以上。以上测试结果表明,本工作研制的Ф500 mm大面积氘/氚靶,可实现强流中子源的高产额中子输出,达到国际先进水平。  相似文献   

4.
用厚靶氘氚(D-T)反应中子产额的计算方法模拟计算了入射氘离子能量为120 keV时D-T中子源的中子产额。研究了氘离子源产生的束流中单原子氘离子(D+)及双原子氘离子(D2+)比例对中子产额的影响。结果表明,提高D+比例,同时降低D2+比例将有效提高中子产额。另外还研究了不同靶膜材料及组分引起的中子产额变化。表明中子产额与靶膜中氚的含量成正比,与靶膜元素的原子质量成反比。同时分析讨论了离子源品质及靶参数对中子源整体性能的影响,得出离子源束流品质的提高对中子源整体的设计至关重要。最后,模拟计算了靶膜表面有氧化层情况下中子产额的变化,并与实验结果作了对比。在此基础上提出了一种新的靶设计方案,并对其物理可行性进行了研究。  相似文献   

5.
惯性约束聚变低温冷冻氘氚靶制备技术   总被引:1,自引:0,他引:1  
低温冷冻氘氚靶对于惯性约束聚变研究至关重要,主要有塑料微球靶、金属铍球靶、泡沫球壳靶等。根据微球球壳材质的不同,采用不同的低温冷冻氘氚靶制备技术。塑料微球靶采用“高压充氘氚-冷冻法”或“充气管充气法”;金属铍球靶采用“低温、低压冷凝法”或“高温、高压扩散连接半球壳法”;多孔泡沫球壳靶采用“球壳材料吸附氘氚液体法”。本文简述上述技术和方法的发展状况和趋势。  相似文献   

6.
SIMS对氘靶钛膜中氘的分布研究   总被引:3,自引:3,他引:0  
用负的SIMS分析技术进行H同位素相对含量Ti膜深度变化的分析,获得了氘随膜深度变化的分布曲线。在接近膜表面的一个深度范围内,除有明显的O^-、CO^-和很微弱的OH^-,OD^-及CHO^-峰谱外,还有很大的D^-二次离子质谱峰,氘的丰度估计约为98%。在靶膜内部,氘的丰度达99%以上。  相似文献   

7.
硼中子俘获治疗(Boron Neutron Capture Therapy,BNCT)是一种具有广阔前景的癌症治疗方法。氘氚中子源是未来可供选择的BNCT中子源之一,由于氘氚中子源产生的中子能量为14.1 MeV,不能直接用于BNCT,需要进行束流慢化整形。使用蒙特卡罗模拟程序MCNP5设计了相应的束流整形组件(Beam Shaping Assembly,BSA),模拟验证了用半径为14 cm的天然铀球做中子倍增层的优越性,计算结果表明:采用50 cm厚的BiF3和10 cm厚的TiF3组合慢化层,17 cm厚的AlF3补充慢化层,0.2 mm厚的Cd热中子吸收层,3.5 cm厚的Pb作为γ屏蔽层,以及10 cm厚的Pb反射层,获得了较为理想的治疗中子束,输出中子束的空气端参数满足国际原子能机构(International Atomic Energy Agency,IAEA)的建议值。  相似文献   

8.
中子发生器用氚靶的研究进展   总被引:5,自引:0,他引:5  
对粒子加速器和密封中子管用氚靶的工作原理、制备过程及基本要求,包括具有较高的载氚密度、较高的热稳定性、氚靶靶膜应具有较低的^3He释放率和掉粉率等作了简要介绍。在此基础上,综述了近年来在金属氚化物膜块结构和性质、靶膜表面性质、金属氚化物的氦释放和新型靶材料的研制等方面的进展,提出了今后中子发生器氚靶的研究方向,主要涉及新型靶材料设计开发、新型结构靶研制、氚化物靶膜结构及其氦释放行为研究等方面。  相似文献   

9.
本文设计一种用于1012 n/s量级氘氚中子发生器HINEG(High Intensity Neutron Generator)的旋转氚靶系统,对该系统的技术难点、机械和冷却方案等进行介绍,给出了该靶系统的设计关键指标参数,并利用CFD方法对该旋转靶系统的传热过程进行三维模拟和分析。分析结果表明,该靶系统在稳定运行时,靶片最高温度为48℃,靶系统采用的冷却方案可以有效地实现靶系统的散热,不会发生氚的大量释放和靶片熔毁。  相似文献   

10.
研究采用弹性反冲探测(ERD)方法测量钛膜中氘、氚的浓度。实验所用Ti膜用磁控溅射法制备,膜厚小于100nm,以石英玻璃(SiO2)为底衬,Ti膜加镀了1层Ni保护膜,以防Ti膜氧化和增强Ti膜吸氢。以6.0MeVO粒子作为入射粒子,在30°方向上探测反冲粒子,在此实验条件下,O粒子对D、T的碰撞截面为卢瑟福截面。对两个样品用ERD方法测量钛膜中的D、T含量,获得了D、T的面密度。测量结果表明,采用如上方法测量Ti膜中D、T浓度的误差小于7%。  相似文献   

11.
氢的同位素氕(H)、氘(D)和氚(T)在医疗、核能、国防等领域都有着广泛的应用,特别是在碳达峰、碳中和的“双碳”背景下,采用氘氚核聚变能被认为是我国的重要能源战略。故实现氢同位素的有效分离具有极其重要意义,然而自然界中氘和氚的相对丰度却极低,国内外学者相继开展了广泛的科学研究。本文首先对水中氢同位素分离的技术原理进行了概述;然后,从工程化应用角度,重点综述了电解法、精馏法和化学交换法;从实验室研发角度,重点综述了膜分离法和多孔材料吸附法。最后,对几种典型技术的分离因子和能耗进行了对比分析,并展望了未来水中氢同位素分离技术的发展趋势,以期为水中氢同位素的高效分离提供指导。  相似文献   

12.
采用仪器中子活化分析技术(INAA)对中子发生器用氚靶的靶膜材料Ti、Y中的12种杂质元素进行了分析。对实验结果中存在的问题进行了讨论,计算了实验条件下各杂质元素的检出限,用作质控标准的国标物质测量值与推荐值的相对标准偏差(RSD)≤±10%。  相似文献   

13.
完成了BIXS能谱测量系统的组建及调试,对BIXS技术测量氚化钛膜氚活度的实验方法进行了研究。实验获得了空气和Ar气介质中的X射线能谱,与空气介质相比,除有两个相同峰位能量为4.5 keV和5.0 keV的谱峰和峰强度(或峰面积)分别减弱至约为0.4%、1%外,还增加了3.0 keV、9.0keV的两个谱峰;同时获得了不同氚活度氚化钛膜的X射线能谱,结果表明氚活度决定着X射线能谱的峰面积,具有良好的线性关系。  相似文献   

14.
为研究光生成带电π介子和中性K介子,研制了1套液体氢/氘靶系统,用于日本东北大学核科学实验室的中性K介子谱仪实验系统。这套靶系统的设计目标是使生成产额最大化、本底最小化及操作安全易行。经实验检验,该套液体氢/氘靶系统的几何安置误差约为1.1mm,靶的有效核子个数不确定度约为0.63%。靶系统在液体状态连续稳定工作可超过3周。靶系统的良好运行完全达到了预先设计目标。  相似文献   

15.
氚靶制备工艺中的充氚手套箱内氚含量的及时监测和含氚气氛的净化处理是重要的一环.本工作研究在激光靶制备手套箱的氚净化系统上使用本实验室研制的一种大粒径疏水催化剂Pt-ST/DVB替代原有亲水催化剂的可行性,并对该催化剂在系统运行中的一些参数进行考察.结果表明:以自制的Pt-ST/DVB疏水催化剂替代原有的亲水催化剂用于激光靶制备手套箱的氚净化系统上进行高压充氚现场含氚废气处理是可行的.  相似文献   

16.
为阐释Fe-Al渗铝层表面暂态相Al2O3膜向稳态相α-Al2O3膜的转变机理,探索稳态相α-Al2O3膜制备的氧化工艺参数范围,采用掠入射角X射线衍射仪、辉光放电光谱仪、聚焦离子束、透射电镜等,结合热重分析对CLAM钢基体Fe-Al渗铝层在940~980 ℃、1 Pa~20 kPa参数下的氧化生长行为进行了深入表征与机理分析。研究结果表明,在1 Pa~20 kPa氧分压范围内Al2O3膜生长初期反应速率常数随着氧分压的升高而增大,而后期反应速率常数反而随之下降;采用掠入射角X射线衍射仪对3~180 min氧化不同时期表面Al2O3膜的相结构进行了掠入射角分析,推测Al2O3膜的生长经历了从氧化初期形成暂态相γ-Al2O3(15 min)→过渡态相α-(Al0.948Cr0.0522O3(30 min)→稳态相α-Al2O3(120~180 min)的演变过程,最短相转变时间约60~90 min,连续Al2O3膜厚度约2 000 nm;同时,结合聚焦离子束对30、120 min形成的Al2O3膜表面进行了精确定向切割制样,并采用透射电镜选区电子衍射分析验证了相转变前Al2O3膜结构为过渡态相α-(Al0.948Cr0.0522O3(113),转变后为稳态相α-Al2O3(113),证实了Cr作为第三组元促进暂态相向稳态相α-Al2O3的转变规律。  相似文献   

17.
对Al/Zr V/Mo多层膜的吸氘性能进行了实验研究。铝膜仅在320 ℃有单一的除气峰,Zr V膜的除气峰有2个,分别为220和350 ℃。当铝层平均厚度小于 0 6μm时,Al/Zr V多层膜的除气峰类似于Zr V膜;大于0 6μm时,类似于铝膜。多层膜的吸氘量随铝膜的厚度增加逐步减小,直至铝膜的平均厚度为0 7μm后,吸氘量不再有大的变化,但有小幅波动。由于 Al膜在除气中有不同程度的破坏,当铝膜平均厚度小于0 6μm时,多层膜的吸氘速率变化行为类似于 Zr V膜;当铝膜厚度大于 0 6μm时,多层膜的吸氘速率受铝膜厚度的影响不大。  相似文献   

18.
对Er2O3质量分数为4.32%的UO2-Er2O3可燃毒物燃料芯块的制备技术进行了初步研究。通过对比不同工艺条件(混料、成型、烧结)下,芯块的外观完整度、密度、晶粒度等性能,初步得到了UO2-Er2O3燃料芯块的制备技术。试验表明:干法球磨混合6?h,添加5‰的聚乙烯醇(PVA),300~350?MPa压力下冷压成型,1700~1750℃、H2气氛中烧结2~3?h,可得到外观完整、密度大于等于95%理论密度(T.D.)、晶粒尺寸大于8?μm的UO2?-Er2O3燃料芯块。   相似文献   

19.
99Mo是一种重要的医用放射性同位素。采用低浓铀(LEU)靶件生产裂变99Mo是发展趋势。本工作进行了电沉积UO2靶件制备、靶件溶解以及99Mo化学分离等工艺研究,确定了电沉积LEU UO2靶件制备医用裂变99Mo的工艺流程。研究表明,于不锈钢管内壁上电沉积UO2,在pH=7、电流0.5~2 mA/cm2、温度75~90 ℃、镀液中U浓度5 mg/mL条件下,经过约210 h电沉积,不锈钢管内壁上UO2沉积层质量达到42 mg/cm2;采用6 mol/L HNO3溶解UO2镀层。采用α-安息香肟沉淀法实现99Mo与大量裂变产物的初步分离,采用阴离子交换法与活性炭色层法联用实现99Mo的纯化;纯化后的99Mo溶液中,杂质131I、90Sr、95Zr、103Ru、238U活度与99Mo活度比值分别为4.47×10-6%、7.40×10-7%、8.67×10-7%、2.57×10-6%、1.69×10-14%,均小于《欧洲药典》规定值,满足医用要求。本工作建立了电沉积LEU UO2靶件生产高纯医用裂变99Mo的工艺流程,为今后采用LEU技术生产医用裂变99Mo,进而实现其自主规模化生产打下了基础。  相似文献   

20.
《原子能科学技术》2003,37(Z1):29-32
研究了Al2O3和SiO2添加剂对UO2芯块晶粒尺寸的影响.结果表明加入少量的Al2O3和SiO2,可有效促进烧结过程中UO2芯块的晶粒度长大,过量加入则会阻碍烧结过程中UO2芯块的致密化;在添加量一定的情况下,添加不同比例的Al2O3和SiO2,对芯块晶粒尺寸有较大影响,只添加SiO2,对芯块晶粒尺寸影响不大,Al2O3添加量增加,芯块晶粒尺寸随之增加;添加Al2O3和SiO2促进UO2芯块晶粒长大的机制是在烧结期间发生了液相烧结.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号